
NASA Technical Memorandum 103870

Computer Integrated
Documentation

Guy Boy

(NASA-TM- t03870) COHPUTER
OOCUMENTAT [0N (NASA) 129

INTEGRATFO

p CSCL 09B
N9Z-11673

Uncl,]s
G]/61 0048767

September 1991

Working Paper - This Technical Memorandum
is an unedited report of research that is ongoing.
It is being released in this format to quickly
provide the research community with important
information.

N/L._A
National Aeronautics and
Space Administration

2

NASA Technical Memorandum 103870

Computer Integrated
Documentation
Guy Boy, Ames Research Center, Moffett Field, California

September 1991

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

Contents

Summary ... 1

Acknowledgements ... 1

1. Description of the Problem .. 3

1.1. Introduction ... 3

1.2. Intelligent Assistant Systems Background .. 4

1.2.1. Motivations for Designing Intelligent Assistant Systems 4
1.2.2. Human Operator Modeling .. 5
1.2.3. Situation Recognition Analytical Reasoning Model 5
1.2.4. Knowledge Representation Issues .. 6
1.2.5. Associated Human Factors Problems 7

1.3. Documents Management and Maintenance .. 9

1.3.1. Introduction ... 9

1.3.2. Technical Documentation from Design to Operations 10
1.3.3. Navigation Problems in Documentation 12
1.3.4. Context ... 12

1.3.5. Knowledge-Based Indexing ... 13

2. Possible Technologies .. 15

2.1. Conventional Approaches to Indexing and Information Retrieval 15

2.1.1. Definitions ... 15

2.1.1.1. Indexing .. 15
2.1.2.1. Frequency-Based Methods 16
2.1.2.2. Descriptor-Discrimination Value 18
2.1.2.3. Conclusion ... 18

2.1.3. Compound Descriptor Formation 19
2.1.4. Thesaurus Generation .. 19

2.1.4.1. Enlarging Pattern-Matching Capabilities 20
2.1.4.2. Aliases .. 20
2.1.4.3. Conclusion ... 20

.°,

m PRECEDING PAGE BLANK NOT FILMED

I

!
i

|

i

I
!

2,1.5. Some Information Retrieval Models 20

2.1.5.1. Vector Space Model ... 21
2.1.5.2. Automatic Referent Classification 23
2.1.5.3. Probabilistic Retrieval Model 29

2.1.5.4. Fuzzy Set Retrieval Model 31

2.1.6. Conclusions ... 37

2.2. HyperText ... 37

2.2.1. History and Definitions .. 37

2.2.1.1. Linear text .. 37
2.2.1.2. Nonlinear text .. 38

2.2.1.3. What a HyperText system is not 38
2.2.1.4. Browsing ... 39
2.2.1.5. Implementation .. 39

2.2.2. From Text to Hypertext .. 43

2.2.2.1. Description of an example of paper documentation 43
2.2.2.2. Modelling the nodes and the links 45

2.2.3. Conclusions ... 46

2.3. Knowledge-Based Systems ... 46

2.3.1. Concept Indexing ... 47

2.3.1.1. Concept hierarchies acquisition from documentation
experts ... 47
2.3.1.2. Concept indexing by end-users 47

2.3.2. Text Analysis and Interpretation .. 48
2.3.3. Conclusions ... 49

2.4. Synthesis. ... 49

3. Contextual Knowledge .. 51

3.1. Representing Contextual Knowledge .. 51

3.1.1. Introducing the Block Representation 51
3.1.2. Context in Information Retrieval .. 54

3.1.2.1. External vs. internal context 54

3.1.2.2. Current context and context patterns 54
3.1.2.3. Mutually-independent vs. dependent referents
within a block .. 54

3.2. Using Contextual Knowledge,, 55

iv

3.2.1.Block Management... 55
3.2.2. Using Context in Information Retrieval................................56

3.2.2.1. Context compilation... 56
3.2.2.2.Compiledcontextuse... 58
3.2.2.3.Usingabnormalconditions.................................. 58

3.3.Context-SensitiveIndexing... 59

3.3.1.Building SuboptimalBlockBasesby Semi-Automatic
Indexing .. 59

3.3.1.1. Extracting words and their frequency.......................59
3.3.1.2. Extracting single-term descriptors...........................59
3.3.1.3.Constructingcompounddescriptors........................ 59
3.3.1.4. Constructing aliases... 60
3.3.1.5.Building descriptor-referentlinks 60

3.3.2.Intentionalvs.ExperimentalSearch.................................... 60

3.3.2.1.Definitions _.. 60
3.3.2.2.Detectingtheusersearchmode.............................. 61

3.3.3.SuccessandFailureFeedback.. 61
3.3.4.User-GuidedIndexing in ExperimentalSearchMode................61

3.3.4.1.Recordingatrace.. 62
3.3.4.2.Describingasuccessfulreferent............................. 62

3.3.5.User-GuidedIndexing in Intentional SearchMode...................62

3.3.5.1.DiscoveringAbnormalConditions......................... 62
3.3.5.2. Refining Index-Blocks by Context..........................64
3.3.5.3. Example of Application 65

3.3.6. Conclusions... 06

4. Implementationof aComputerIntegratedDocumentationSystem........................ 69

4.1. SpaceStationProgramRequirementDocumentApplication....................69

4.1.1.Introduction... 69
4.1.2.Analysisof theProgramDefinitionandRequirement
Document.. 70
4.1.3.TheTechnicalandManagementInformationSystem................ 70

4.2.TheComputerIntegratedDocumentationSystem................................ 71

4.2.1.HyperTextDatabase.. 71

4.2.1.1.Generalinfrastructureof referents.......................... 71
4.2.1.2.Referents... 72
4.2.1.3.Descriptors... 74

V

i

|

|
!

4.2.2. Knowledge-Based Management and Maintenance System 74

4.2.2. !. Descriptor agenda ... 74
4.2.2.2. Access to a compound descriptor (triggering
condition of a block) from a single-term descriptor 75
4.2.2.3. Representation of referents 75

4.2.3. User Interface ... 79

4.2.3.1. Control panel .. 79
4.2.3.2. Basic stacks (windows) 79
4.2.3.3. Various kinds of referents 79
4.2.3.4. Visual aids ... 82

5. Theoretical Considerations ... 85

5.1. Navigation in HyperSpace , ... 85

5.1.1. Theory of Navigation in Hyperspace 85

5.1.1.1. User's search mode and ontology 85
5.1.1.2. The block representation as a navigation aid 86

5.1.2. Hypenext Metalevel .. 87

5.2. Acquisition of Indexing Knowledge ... 87

5.2.1. Semantic Indexing .. 87

5.2.2. Extracting Blocks from Traces in the Hyperspace 88

5.2.2.1. Analysis of user's traces 88

5.2.2.2. User interface capabilities for extracting useful
referents-descriptors relations .. 89

5.2.3. Context Clustering .. 89

5.2.3.1. Placing a context pattern in an existing class 90
5.2.3.2. Creating a new class .. 90
5.2.3.3. Merging several classes into a single class 91
5.2.3.4. Splitting a class into several classes 92

5.3. Generation and Maintenance of a Large Documentation 92

5.3.1. Generation of Descriptors ... 93

5.3.1.1. Generation of descriptor at the user level 93
5.3.1.2. Maintenance of a descriptor dictionary 93

5.3.2. Incremental Reinforcement from Users Feedback in Context 94
5.3.3. Semantic Correlation between Documents 95

5.4. Relation to Other Work .. 97

5.4.1. Regarding Blocks as Procedures 97

vi

5.4.2.IntelligentHypertextPerspective....................................... 97

6. PersonnelandPublications... 99

6.1. Personnel.. 99
6.2. Major Publications and Presentations.. 99

Appendices

A. Measures of Vector Similarity .. 101

A.1. Inner Product .. : 101
A.2. Dice Product ... 101
A.3. Cosine Coefficient .. 101
A.4. Jaccard Coefficient ... 102

B. From Text to HyperText .. 103

B. 1. Introduction ... 103
B.2. Text Referent Functionalities .. 104

B.2.1. Document Title Field .. 104

B.2.2. Hierarchy Field .. 104
B.2.3. Text Field .. 104

B.2.4. Built-in Descriptor Zone .. 104

B.3. Construction of an Explicit Hierarchical Structure 104
B.4. Graphics Referent Functionalities .. 105

B.4.1. Sensitive Graphic Area Creation 106
B.4.2. Sensitive Graphic Area Maintenance 106

C. Multimedia and Virtual Environments ... 107

C.1. Multimedia ... I07

C.2.

C. 1.1. History ... 107
C. 1.2. Videodiscs ... 108

C.1.3. Multimedia Applications .. 108

Virtual Environments ... 109

C.2.1. The DataGlove ... 110
C.2.2. The Virtual Environment Workstation 111

C.2.3. Applications .. 112

D. HyperCard and HyperTalk .. 115

Abbreviations and Acronyms ... 119

References .. 121

vii

Summary

This technical memorandum (TM) presents the main technical issues of the Computer

Integrated Documentation (CID) project. The problem of automation of documents
management and maintenance is analyzed both from an artificial intelligence viewpoint and
from a human factors viewpoint. Possible technologies for CID are reviewed: conventional
approaches to indexing and information retrieval, hypertext, and knowledge-based
systems. A particular effort has been made to provide an appropriate representation for
contextual knowledge. This representation is used to generate context on hypertext links.
Thus, indexing in CID is context-sensitive. The implementation of the current version of
CID is described. It includes a hypertext database, a knowledge-based management and
maintenance system, and a user interface. This TM also provides a series of theoretical
considerations as navigation in hyperspace, acquisition of indexing knowledge, generation
and maintenance of a large documentation, and relation to other work.

Acknowledgements
Thanks to Philippa Gander for many useful comments on the work presented in this
technical memorendum. Mark Gersh helped in providing a relevant application domain for
the techniques developed as well as in the fine-tuning of this report. Nathalie Math6, Ann
Patterson-Hine, Peter Friedland, David Thompson, and Catherine Baudin also provided
astute advice towards improving the quality of this technical memorendum.

Chapter 1

Description of the Problem

This chapter introduces the problem of designing a Computer Integrated Documentation
(CID) system. Several approaches have been taken in the field of information retrieval and
publishing. The current approach is based on intelligent assistant systems (IAS) (section
1.2). We introduce the main problem as being documentation management and maintenance
(section 1.3).

1.1. Introduction

The basic task is to build an intelligent problem-driven context-sensitive browsing tool
which interacts with and learns from users, and uses Advanced Interaction Media (AIM)

which include intelligent hypertext, multimedia, and virtual environments. We intend to
apply this tool to Space Shuttle and Space Station Freedom (SSF) documentation. As we
are designing a generic tool, other applications can be anticipated in such domains as office
automation and on-board electronic libraries.

The capacity of an operator to absorb overall Space Shuttle or Space Station information
and knowledge, and use it to reach intelligent decisions is stretched not only by the amount
and variety of the available data, but also by the complex relationships among different
types of information, and the resulting difficulties in interpreting the data.

This research project deals with AIM, i.e., the methods and techniques to generate,
analyze, store, retrieve and handle information entities by using specifically designed tools.
AIM research differs from, and complements, classical efforts in hypertext or artificial
intelligence (AI) in the sense that it integrates both approaches. It tries to attack real-world
problems such as technical documentation (in general) and procedures followed in space
applications. The main issues and objectives of the Computer Integrated Documentation

(CID) project are:

- to provide requirements to build integrated documentation (in the context of the Space
Station),

- to examine, better understand, and improve information and knowledge retrieval during
operations (in the context of the Space Shuttle).

In the current research effort, we are tackling the difficult problem of design and use of
electronic extensions to short- and long-term memory during operations.

, Requirements for short-term memory problems are handled by operations
procedures. Operations procedures are ready-to-use sequences (or simple algorithms)
of actions. They are made of shallow knowledge necessary for carrying out well-

pA_ _..__i NTENTIONALLY BLAI_
PRECEDING PAGE BLANK NOT FILMED

understood tasks. They are used during operations as safeguard guidelines and
extensions of the short-term memory of operators. Corresponding human information

processing involves domain-specific (expert skills) methods.

o Long-term memory problems happen when operations procedures (i.e., shallow
knowledge) are not sufficient. This occurs after unexpected situations where deeper
knowledge is necessary to solve non-formalized problems (i.e., problems that do not
have procedures as recovery solutions). In these cases, operators have to be able to
access deep information and knowledge (a solution would be to provide an extension
of the human long-term memory with some appropriate problem solving mechanism
and strategies). Corresponding human information processing involves weak
methods (classical AI-type problem solving).

Two space applications have been selected to demonstrate these concepts.

o The exploration of SSF Program Requirement Document as an electronic extension of
the long-term memory for the Space Station. CID would allow operations people as
well as designers to explore and find out quickly why a piece of equipment has been
designed the way it is (design rationale retrieval and use). The analysis on this
application should provide guidelines for future documentation systems design. A
system is currently under development.

o Procedures in the mission control room at JSC are being examined and will lead to a

generic application of procedure following. The problem is to understand the various
mechanisms that are used by flight controllers during flight operations to retrieve and

use procedures. A system will be implemented to test the extracted concepts.

1.2. Intelligent Assistant Systems Background

Information retrieval is generally handled using keywords and binary equations of
keywords. It happens that this technique is not satisfactory in situations where context (or
time) is a critical issue. Keywords are generally built on a context-free basis. Keywords
builders even try to decontextualize keywords. In contrast, our approach tries to restore
context in keywords.

1.2.1. Motivations for Designing Intelligent Assistant Systems

Progress in aerospace technology stresses the need for higher performance, more reliable
and safer systems. The common factor is that the human monitors, controls, diagnoses and
maintains systems which are evolving even when the operator does not act on them. This is
a process control situation. Documentation is designed and developed for helping operators
in such situations.

A major problem of current automation is that the human operator can be either
underloaded in normal situations or overloaded in abnormal situations. Furthermore,
documentation is often needed when people do not have time tO consult it, i.e., when they
are overloaded. Moreover, as automation increases, there will be fewer operators for more

sophisticated tasks on very complex systems. Thus, it is predictable that operators will not
be able to respond in a reasonable period of time in abnormal situations or in very
demanding normal situations. The efficiency and quality of their responses will be
dependent on their skills in understanding and handling operational situations.

4

Implementationissueson intelligentassistantsystems(IAS)havebeenalreadydeveloped
(Boy, 1991).

1.2.2. Human Operator Modeling

The emerging model is quite different from "conventional" models of problem solving used
in AI. Rasmussen (1986) defines human information processing as a process including a
hierarchy of three levels: the skill-based behavior which is a set of well-integrated automatic

processes I (kinds of stimulus-response processes), the rule-based behavior which
corresponds to actual expert systems 0F-THEN rules) and the knowledge-based behavior
which corresponds to high level situation identification, decision making, and planning.

When a skilled human operator performs routine tasks, he does not use the rule-based or
knowledge-based level but the skill-based level. Human problem solving in routine tasks is
guided by "patterns" learned from training and past experience. The operator's real
expertise is not to reason analytically while he is under situational pressure. He is
accommodating pre-leamed procedures in real-time. In some rare cases, such local
accommodations cannot work and lead to failure because the operator does not have a
ready-to-use procedure. Even in this case, driven by a high workload, the operator will
choose general heuristics which he accommodates as specific situational patterns.

This goal-oriented strategy, based on local accommodation of patterns, is very efficient
and has been observed in real world operations (Boy et al., 1983, 1985, 1986, 1987,
1988). To date, three projects carded out both at CERT (French Aerospace Administration
Research Center in Toulouse) and at NASA-Ames have improved understanding of this
model: the MESSAGE project developed for commercial aircraft certification, the HORSES
project developed for studying human-machine cooperation in fault diagnosis, and the
SAOTS project developed with CNES (French Space Agency) for studying operator
assistance in space telerobotics.

A computer model is now available (see the next section on SRAR). It has to be tested
and improved on other applications.

1.2.3. Situation Recognition Analytical Reasoning Model

A problem is characterized by a problem statement and a problem solving process leading
to a solution. Everybody knows that a well stated problem is already half solved.
Moreover, when a beginner starts to learn a particular domain, he starts learning analytical

knowledge which he will improve incrementally simply by augmentating his knowledge
base and also by transfering various entities of his initial analytical sub-optimal knowledge
base towards a situational knowledge 2 better suited for routine use (more expert).

The SRAR model (Situation Recognition and Analytical Reasoning) provides a formal
framework for representing situational (problem statements or situational patterns) and

1 Automatic processes are taken in the sense of Schneider & Shiffrin (1977).
2 The quality of communication between two individuals relies on reciprocal understanding of each other's
internal model of thinking. For instance, a discussion between experts of the same domain is carried out in
an operative language (Falzon, 1986) which is "very situational". In this case, experts have almost identical
knowledge of the subject they are talking about, i.e., their internal models are nearly the same. Conversely,
when a professor teaches, his internal model is very different from those of his students'. In particular, a
professor has to "decompile" his own situational knowledge to make it understandable by novices. He will
be said to be using an "analytical explanation" to make himself understood. This distinction between
analytical and situational is not new. In his critique of Artificial Intelligence, Hubert Dreyfus (1979) claims
that there is no expertise without situational knowledge. He claims also that it is very difficult to elicit and
represent such knowledge in order to use it in computer programs.

5

analytical(problemsolvingresources)knowledge.It providesagoodframeworkfor
representingprocessesof learningby specialization/structuring.Thismodelis usedalsofor
designinganincrementalknowledgeacquisitiontool.At thebeginningof theknowledge
acquisitionprocess,intelligentsystems3havefew smallsituationalpatterns(theyare
inexperienced)andbroadanalyticalknowledgewhichallowsthemto solveseveral
problemsin thegivendomain.As theknowledgeacquisitionprocessgoeson, situational
patterns(problemstatements)becomemorecomplexandnumerous,andat thesametime
theanalyticalknowledgebecomesmorestructured(Figure1.1).

Situation

Patterns

N

Beginner I__

Analytical

Knowledge

m,_ A1 J

•.[A2

Expert

Figure 1.1. The SRAR model.

When an IAS is implemented using the SRAR model, it can be used as a student with the
operator being the teacher. It has a very analytical knowledge base at the beginning of its
design and it will acquire more situational knowledge with practice. Analytical knowledge

may come from first principles or from various episodes or scenarios. For instance,

analytical knowledge is included in most manuals or books 4. In the former case, the
problem statement pattern matching will be done by instantiation and the resulting
reasoning will be deductive. In the later case, it will be done by analogy. Both of these
cases have to be taken into account for building an IAS.

1.2.4. Knowledge Representation Issues

The SRAR model requires an appropriate knowledge representation (KR) which is tractable

to both computers and users. The KR currently in use was designed as a representation
framework for operation manuals, procedures checklists, user guides and other on line
tools useful for controlling complex dynamic systems. The basic entity is a "block" which
includes five characteristics: a goal, actions, initial conditions, abnormal conditions and

contextual conditions. This knowledge representation is briefly described in this section
and developed in section 3.1.

3 This has been observed on humans involved in problem solving tasks, in particular in the HORSES

experiment (Boy, 1987). However, we claim that such observations can improve intelligent=cOmputer
systems also.

4 It is generally very difficult to express situational knowledge using wriuen support only. People mix
text, drawings, and even gestures to express situational ideas. The main claim of this research is that,
because they are good at simulation, computers can provide this kind of ability.

6

Blocksareorganizedby context.Severalblocksaresaidto bein thesamecontextwhen
theycan be connected to the same overall goal. A situation pattern is a problem statement
which, if it matches the current perceived situation, will activate a context of blocks. Blocks
are then explored and executed to solve the problem stated by the situation pattern. The
execution of a block is started whenever its goal is evoked and its initial conditions are
satisfied. The execution of a block consists of performing its actions and controlling the
non-satisfaction of the corresponding abnormal conditions. Constraints can be of two
types: weak constraints which, if they are not satisfied, will cause an exit from the current
block towards another possible block in the same context, and strong constraints which, if
they are not satisfied, will cause an exit of the current block towards another possible
context of blocks.

Blocks have been designed to capture both analytical and situational aspects of
knowledge. Situation patterns are represented by a set of conditions to be satisfied. These
conditions can be bounded together by logical or mathematical operators. At the beginning
of the knowledge acquisition process, situation patterns are very small, i.e., they include a
few very simple conditions. As experimentation continues on the IAS, parts of some
blocks can be transferred into situation patterns (Boy & Delail, 1988). For instance, there
are actions, like data acquisition, which are performed during the analytical reasoning
process, and which could be part of the information to be checked in the first place, i.e., as
part of the situation pattern initializing the analytical reasoning. This transformation caused
by experience could be called situational learning.

1.2.5. Associated Human Factors Problems

We do not, at the present time, have a rational, predictive methodology for system design
by which the AI subsystem developer can integrate human factors principles with other
system design principles. We would need to understand better how people recognize
patterns, assimilate and integrate information, add their own previous knowledge and value
structure, work together, and come up with intelligent, appropriate decisions under difficult
circumstances. We would need to understand how actions are initiated, evaluated, and
reformulated in the real world. We do not fully understand the constraints that must be
placed on the design of the non-human subsystem because of human motivation, action,
and experience.

Only recently, the human factors research community started to improve (particularly
with regard to human cognition) the consolidation of their empirical data into design
methods and principles with which to guide the design process for IASs. Empirical
emphasis tends to have been placed upon isolating the underlying properties of individual
processes rather than upon considering the human as a single component of some larger,
complex, cognitive system. Despite the lack of precise models, a careful analysis of human
behavior must play a major role in the design of future human-machine systems.
Performance (in particular cognitive performance) assessment is a critical issue that must be
at the forefront of this collaborative effort. Since we do not have design guidelines, one of
the principal problems that confronts system developers is how to assess the quality of a
system composed of artificial intelligence (AI) and Human Intelligence (HI) components,
and how to test the system for operation in regions of problem spaces which are beyond the
design basis. A method of simulation is needed to explore potential problems of the total
system operating in the appropriate scenarios at an early design stage.

In the view of the many uncertainties described above, it seems obvious that a successful
design, operation, and evaluation of complex dynamic human-machine systems demands
collaboration between the AI and HI communities from the earliest stages of conceptual
design. The purpose of the proposed activity is to implement a collaborative AI-HI
approach with respect to particular applications.

There are two possible ways to evaluate an engineered system from design to operations.

7

°

,

One may use already established human performance models, simulate human-
machine interactions, and deduce indices on potential human workload and
performance. Such approach has been already used in France using the MESSAGE
system for the evaluation of pilots workload and performance in commercial aircraft
cockpits (Boy, 1983). The Man-Machine Integration Design and Analysis System
(MIDAS) is an existing computer-aided design workstation incorporating a human-
performance model with (at present) limited cognitive ability together with a rapid
prototyping capability for changing the human environment and mission. It is a
human factors engineering tool which assists design engineers in the conceptual
phase of crewstation development and helps anticipate training requirements. It
provides designers with interactive, analytic, and graphical tools which permit
visualization for human engineering principles. Its human-performance model is a
broadly based framework upon which various partial models of the cognitive system
may be integrated. The argument in support of using human-performance models is
straightforward. It is simply not feasible to perform formal human-subject
experiments for identifying or resolving all the issues that are likely to arise within the
context of a particular system design sufficiently early in the design cycle. Moreover,
it has become widely accepted that predictive needs for design purposes are best
served by approximate models (Elkind, Card, Horberg & Huey, I989; McMillan et
al., 1989). Analytical methods utilizing human-performance models synthesize
disparate results into a unifying theory (normative model) and allow a basis for
prediction in new situations. Theories provide bases for design decisions in the
absence of specific data.

Another approach is closed-loop rapid prototyping with potential end-user feedback.

This technique is very difficult and often impossible to carry out when end-users are
either very busy, unavailable, or not identifiable in advance. In space applications,
end-users are genera//y well identifiable in advance. They are astronauts, ground
flight controllers, designers, engineers, etc. What is not well identifiable is the
situations in which these people are going to evolve during future missions.
Simulation experiments are necessary to train these people.

Figure 1.2.

lligant I

istant I

stem

_, Environment •

tnteorated Human-
Machine System

R
Prototype

Model of Environment

Models of IHMS

The structure of an IHMS, and the corresponding models.

Closed-loop rapid prototyping with potential end-user feedback methods allow both
human operator training and incremental evaluation of IASs necessary for safety and
success of operations. In this approach, there is no difference between prototype and

end-product.Thedevelopedsystemevolveswith bothfeedbackfrom usersand
implementationof newtechnologicalsolutions(comingfrom theunderstandingof
human-machinelimitationsandadvantages).Closed-looprapidprototypingwith
potentialend-userfeedbackmethodsnecessitatecognitivemodeling.An approachto
theconstructionof integratedhuman-machinesystems(IHMS) hasbeengivenin
(Boy & Gruber,1990).Figure 1.2illustratesthestructureof anIHMS, andthe
correspondingmodels.In thepresentwork, themachineis thedocumentation(i.e.,
thehypertext),andtheintelligentassistafitsystem(IAS) is thecontext-sensitive
indexingandinformationretrievalmechanism.

1.3. Documents Management and Maintenance

1.3.1. Introduction

The complexity of modern engineered systems stresses the need for "good" technical and
operational documentation systems. At present, technical and operational manuals are
designed and developed 5 to satisfy four goals:

storing systems architecture and internal functions,
storing performance and limitations (constraints) of these systems,

- reuse of such information for operations and maintenance,
- reuse of such information as a basis for designing new systems.

Previous attempts at computerizing documentation for aerospace systems have been
restricted in scope or difficult to use. We have previously developed a knowledge-based
system called HORSES designed to assist astronauts in the use of electronic documentation
to aid fault diagnosis on the Orbital Refueling System (ORS) of the Space Shuttle (Boy,
1986, 1987). This system was connected to, and tested on, an ORS simulator, and has
stimulated the new research directions underlying the present proposal. In particular,
advances are needed in: techniques for acquiring domain knowledge and appropriate
retrieval strategies, knowledge representation, multimedia systems for interconnecting
documents, and user interaction.

In this section, we analyze the problems of increasing volume of technical
documentation, availability of documentation experts, disparity of knowledge sources, and
on-board documentation.

Increasing volume of technical documentation

Ventura (1988) analyzed the documentation problem in a military perspective. Current
fighter aircraft need 300,000 to 500,000 pages of documentation, and this quantity is
impossible to deal with in a paper format. The same problem 6 can be generalized to other
industries such as civil aeronautics, nuclear energy, or chemical industries. Even if such
documentation can be generated on paper, it is generally not well used if not used at all.

5 Note that developers are generally not the end-users. Most of the problems that end-users encounter is
usually due to this.
6 Rep. Robert A. Roe, who chairs the House Committee on Science, Space and Technology (Asker, 1990),
has stated: "In this era of information overload, the bigger question is how do we make judgements about
which information is necessary to preserve and protect and which is expendable... This question grows in
significance as we enter the space station era, where each day will bring forth enough data to fill the Library
of Congress." Big organizations currently develop huge documentation bases which are difficult to trace and
search. The problem of selection of the information to keep is solved empirically, case by case.

WhenDocumentationExpertsareneeded,theymaynotbeexpertanymore!
Documentationisvery labor-intensive,requiringagreatdealof expertiseanddevelopment
time.However,themainproblemis thatexpertdevelopersmayno longerbeavailableby
thetimeavery largedocumentationprojectis nearingcompletion.Theymayhavebeen
assignedto adifferentprojectorchangedemployment.In thelife cycleof asystem,its
technicaldocumentationis moreusefulduringoperationsthanduringdesign.Furthermore,
it happensthatmostdocumentationsystems(generallypaper-based)arenotentirelyself-
explanatory.Operatorsgenerallyneedhelpfromdocumentationdevelopers.At thispoint,
developersmaynot beactivelyinvolvedin thetopicanymore.Thus,theyhavetocarry out
a tremendous amount of problem solving activity to understand and retrieve the information
needed.

Disparity of knowledge Sources
With present documentation systems, it is difficult to integrate different sources of
knowledge in a problem solving task. This integration can be done during the problem
solving process (as is done now), i.e., human operators have to construct on-line dynamic
bindings between various available sources of knowledge. However, integration can be
facilitated if the knowledge is prepared in an appropriate form and if the connections
between the various chunks of knowledge are already programmed. As it is very difficult to
design an appropriate connection network of knowledge, knowledge transformation will be
necessary from an analytical knowledge base to a more situational one. In the current Space
Station Freedom documentation (SSFD), integration of various sources of knowledge is a
key issue. SSFD specialists have to hierarchize, merge, and integrate documents written by
various people.

!

!

On-Board Documentation

It is well known that technical paper documentation for an aircraft, for instance, weighs
approximatively the same as the aircraft itself. Obviously, such documentation cannot be
available on-board. Often, however, all this technical information is not necessary. In very

specific cases which generally lead to incidents or accidents, "good" and complete technical
information may be very useful for avoiding a catastrophe, e.g., the Chernobyl accident.
Thus, computer documentation must be designed to be useful for the operator. At present,
operation manuals have been computerized and are available on cathode raytube displays
on-board Airbus A320 and Boeing 757 and 767. They include only an operational shallow

knowledge sufficient for most operations. However, they do not provide assistance for
lower levels of detail, which could be very useful in complex unexpected situations. In
such situations, on the Space Station, it will be necessary to get integrated answers inferred
from lower levels Of information. Hence, shallow knowledge will not be sufficient. An

integrated documentation system would be a very important tool for Space Station Freedom
because it will decrease the required time to access relevant information and solve problems
that are not predictable in advance.

1.3.2. Technical Documentation from Design to Operations

There are two major questions: how can designers benefit from the end-users experience,
and how can technical information be represented in order for it to be useful to end-users?

Operations people spend enormous amounts of time trying to understand how complex
machines work (or why they incidentally do not work as they should). Unfortunately, it is
often the case that these same people do not understand the documentation itself or how to

10

useit. Thisproblemis verydifficult tohandlein everydaylife becauseit isdifficult to write
suitabledocumentationandbecauseit isverydifficult to searchahugedocumentationbase
withoutappropriateindexing.Bothdesignersandoperationspeoplehavetomodify the
documentation:theformerbecausenewdirectivesimposemodificationsof thedesignand
consequentlyits documentation,andthelatterbecausenewsituationsforcemodifications
of operationsprocedures.Thisaspectleadsto alackof supportabilitythathasbeen
observedduringthelastdecade7.

Technicaldocumentationis producedincrementally,nomatterif it is generatedtop-down
or bottom-up.Peopletry to incrementallytaylorthedocumentationto their needsor the
needsof classesof users.For instance,in modemprogrammingMacLeanet al. (1990)
noticedthat tailoring can be seen as a process of user evolving the system gradually along
with their own changing skills and requirements. So they may have a button of their own,
or one provided by a colleague, which does almost what they want, "except for...". One of
the main expectations from this project is actually to design a user-tailorable documentation
system. The corresponding incremental construction mechanism is illustrated in Figure 1.3.

7 Lowry and Feaster (1987) have emphasized the life cycle cost (LCC) of a system. They
have divided it into four phases: (1) the mission definition phase that involves the
conceptualization of the system, i.e., definition of the problem to be solved and
consideration of initial architectures; (2) the design phase including the design itself and the
development and test of the prototype; (3) the production phase that entails the
manufacturing of the product; (4) the operations phase which involves training, actual use
of the system, maintenance, repairs, etc. The life cycle costs for a military or commercial
system are provided in Table 1.1. The Fiscal Year 1985 Congressional Budget Report
gives a Space Shuttle LCC distribution reported in Table 1.2. These numbers clearly
indicate the importance of operations in the life cycle cost of a system. The main problem is
that performance is currently almost the only major criterion taken into account during
design, with little or no emphasis on supportability. Lowry and Feaster have analyzed the
1986 Challenger accident. Among the essential issues they identified were accessibility,
design criteria, integration, maintainability, management, procedure, reliability, design
requirements, standards, training, and certification. All these issues show the current lack
of supportability. Instead of designing only for performance, can we design for
supportability? CID might be a good solution for helping to solve this difficult problem.

LCC Phase LCC% Cost

1. Definition < 1 %

2. Design < 10 %
3. Production 30 %

4. Operations 60 %

Table 1.1. Department Of Defense LCC Distribution (Lowenstein & Winter, 1986)

Table 1.2. Space Shuttle LCC

LCC Phase LCC% Cost

1. Definition < 1 %

2. Design 6 %
3. Production 8 %

4. Operations 86 %

Distribution (Fiscal Year 1985 Congressional Budget, 1985)

11

Generally,documentationis built andusedtoachieveagivengoal(thatmaybesubdivided
into severalsubgoals).It is modifiedby assessingtheresultsof its usein severalcontexts
(seesection1.3.4).Modificationsmayaffectits indexingmechanism,its infrastructure,
and/orits content.

Context I

i HO0r,0n,Oo 0 eo,a,,on Usek'-t "osu',s1
/

Index, Structure or Content

i Modification /
Figure 1.3. Documentation construction mechanism.

1.3.3. Navigation Problems in Documentation

Users can navigate into the documentation either using the table of contents, the index, or
their own indexing mechanisms and strategies. They generally build their own cognitive
map of the documentation. Studies have been carried out on cognitive navigation in 3-

dimensional space (Oatley, 1977). Navigation in n-dimensional spaces, or hyperspaces, is
recent and deserves more investigations. Our current research focus is on hyperspace
navigation.

The table of contents is generally a good road-map that allows hierarchical navigation in a
document. The index is a rough "what to do next" precompiled keyword search
mechanism. Keywords (also called descriptors) are generally grouped in alphabetical order
in the index. This is generally a good tool to search concepts. As a metaphor, when people
need to find their way in an unknown region, they use a map to locate themselves in the
region and to construct a strategy to go from one place to another. Sometimes the map is
not sufficient and they need to ask a knowledgeable person "what to do next".

Indexing is a key process in the navigation problem. Indexing is based on experience.
The corresponding knowledge is usually acquired incrementally from a sub-optimal
knowledge base. Generally, indexes (at the end of a book, for instance) are context-free.
However, the more an index is used the more it becomes context-sensitive. People tend to

write annotations, put meaningful colors to highlight particular features, underscore
sentences, etc., in order to contextualize the initial indexical knowledge. In other words,

people build their own procedures to revieve information faster and in a more appropriate
and accurate manner.

1.3.4. Context

Why does information retrieval often fail? First, information retrieval is generally done
using keywords linked by logical operators. These keywords are designed and assigned in
a given context that the designers try to make as general as possible. However, the
designers (of these keywords) cannot predict all contextual situations in which the potential
users will use them. The notion of context is crucial in navigation problems. The notion of

12

context is close to the notion of point of view (or extension) developed in belief revision

theories (Doyle, 1979; de Kleer, 1986).
Context could be defined as a set of contextual conditions (also called situation pattern)

that hold in a given situation. Documentation designers cannot anticipate what end-users
will need and use in the documentation they are developing. They do not know how they
will enter into the documentation. Use of documentation is very context-sensitive. For

instance, let us assume that you want to retrieve some very specific information on the air
conditioning in the main cabin of the Space Station. The first thing you may try is to select
the index "air conditioning" in your documentation and browse it with this index. If you
can specify the context of your retrieval, e.g., "you are a designer and are concerned by the
connection of the air conditioning system, and have very little information about the

electrical circuitry in the cabin", then you will specify a better search in the documentation.
The search will not be the same if you mention that "you are an astronaut in the Space
Station and are freezing". Contextual conditions are acquired by experience. It takes hours

(sometimes years) to attach context to problems. In other words, stating a problem requires
the good contextual conditions, if one wants to solve this problem more easily.

It is very difficult to elicit such contextual conditions from experts. This is due to the fact
that such knowledge is very compiled. However, if we consider the reasonable assumption
that contextual knowledge is acquired incrementally, then incremental knowledge
acquisition techniques could be useful for on-line elicitation of context. Indeed, it is
difficult for expert users to attach the right situation to any information retrieval strategy,
simply because they do not remember well what they would do in any given situation. It is
however, very easy to ask them to describe the relevance of retrieved information just after
the fact (i.e., on-line elicitation). Obviously, the question is how to ask such additional
information from users without overloading or "annoying" them. One partial answer is

certainly to reduce the amount of interaction users will have to perform to accomplish this
additional task. "Not too long" positive feedback from the system is also an important
factor. In other words, context acquisition by the system should be rapidly transparent to

users in a short period of time.

1.3.5. Knowledge-Based Indexing

Let's take a preliminary example that will help to understand knowledge-based indexing.
When I first started using the text processing system used to write this report, I had an
interesting experience trying to display the footnote of a page without adding more
information in it. I tried to use the paper documentation provided with the software, but

could not find any satisfactory answer. I finally asked someone in our laboratory who was
an expert of this text processing system and in a few seconds my problem was solved.
What happened is that I used his indexing knowledge to relate my request to the right
information necessary to solve my problem. It would be a great help for users if they could

have the best expert interacting with them to help them retrieve appropriate information

upon request.
The basic model we will adopt is based on the separation between an information base or

data base, called the documentation, and a knowledge-base that includes the best

knowledge we have to index the documentation according to context.
Useful knowledge to index documentation includes types of users, types of tasks that

induce requests, temporal information that is likely to focus retrieval, and other dimensions
that would help narrow the search strategies. Eventually, contextual conditions could be

triggered automatically if appropriate sensors are available. In some suitable cases, such
automated configuration could provide appropriate and timely information to users needing
it without any actions required from them.

13

k

Chapter 2

Possible Technologies

In this chapter, we will attack the problems of indexing, information retrieval, current
organizational software supports, and knowledge-based system technology available for
improving documentation management and maintenance.

2.1. Conventional Approaches to Indexing and Information
Retrieval

2.1.1. Definitions

2.1.1.1. Indexing

The process of constructing document surrogates by assigning identifiers to document
items is known as indexing and is done from text or image analyses. Currently, there are

techniques that allow such analyses to be performed automatically but are only used when
pure text is available. In general, indexing is done by humans, especially when pictures and

graphics are included in the documentation without text describing them.
We also dissociate an objective from a subjective document identifier (Salton, 1989). A

document item, e.g. a paragraph, a chapter, a volume, a library, can be indexed by an
objective identifier that can be its rifle, its author(s) and its publication date, its number, etc.
Generally, tables of contents provide objective document identifiers. Conversely,
subjective identifiers, e.g. keywords, icons, etc., can also be attached to documents items.
Subjective identifiers are generally good descriptions of the document piece they identify.
However, the main problem with subjective identifiers is that they generally lead to several
document items.

2.1.1.2. Descriptors and Referents

We call a descriptor any piece of text (word, sentence, or paragraph) or image (marked area
or label on part of an image) that describes objectively or subjectively any other piece of
documentation. Descriptors can be single-term or multiple-terms. We call a referent any
piece of documentation (word, line of text, paragraph, picture, moving video or animated
sequence, program, volume, library) that is described by at least one descriptor. Referents
are sometimes called targets (Martin, 1990). Referents are always characterized by an
objective identifier, but they also can have subjective identifiers. Let r be a referent, {dl,

I

15 PRECEDING PAGE BLANK NOT FLLMED

d2 , (in} a set of descriptors each of them independently describing r. There must be at
least one di that objectively describe r. Generally, the other descriptors (other than di) are
added because they are more convenient for users, even if they do not objectively describe
r.

Descriptors are always included in the content of a referent. This referent can be either the
table of contents, the index, or any part of the documentation. Tables of contents or indexes

are usually found more convenient because of their well known structure (hierarchical and
alphabetical). We call a consistent set of referents any set of referents that is described by
the same descriptor and can be dissociated from other sets in the current state of the

indexing system.

2.1.1.3. Recall and Precision

Two main parameters are important in information retrieval, indexing exhaustivity and
descriptor specificity. Indexing exhaustivity reflects the degree to which all aspects of the
subject matter of a document item are actually recognized in the indexing product. When
indexing is exhaustive, a large number of descriptors are often assigned, and even minor
aspects of the subject area are reflected by corresponding descriptor assignments.

Term specificity refers to the degree of breadth or narrowness of the descriptors. When
broad descriptors are used for indexing, many useful information items are likely to be
retrieved for users, together with a substantial proportion of useless materials. Normally,
broad descriptors cannot distinguish relevant from nonrelevant document items. Narrow

descriptors, on the other hand, retrieve relatively fewer items, but most of the retrieved
materials (referents) are likely to be helpful to users.

People working in information retrieval have developed formulas that measure indexing
exhaustivity and descriptor specificity. Recall (R) is the proportion of relevant material that
is retrieved:

R = Number of relevant referents retrieved
Total number of relevant referents

Precision (P) is the proportion of retrieved material that is relevant:

p = Number of relevant referents retrieved
Total number of referents retrieved

When a choice must be made between extreme descriptor specificity and extreme descriptor

breadth, the former is generally preferable because the output produced by the high-recall,
low-precision alternative tends to burden users with unmanageably large piles of retrieved
materials. In contrast, high precision searches retrieve fewer items that are more easily
examined (Salton, 1989).

In order to satisfy these recommendations, we currently choose to add context to
descriptors for improving both precision and recall. At the extreme limit, from a descriptor
in a well defined context, we should retrieve only one consistent set of referents.

2.1.2. Single-Term Descriptor Indexing

2.1.2.1. Frequency-Based Methods

If we consider descriptors as single-terms, systematic full-text search can be performed to
extract all the words from a given free-text document. Fast procedures, like TEX, are

16

alreadydevelopedfor accomplishingthis first step(Zimmerman,1988).TEX providesa
list of all thewordsattachedwith their numberof occurrence,andallowsuserstovisualize
eachword in its context8 in thecorrespondingdocument.Suchfacility allowsusersto
rapidly separatedomain descriptors from non-domain descriptors. At this stage, words
morphologically related, e.g., plurals, tenses, etc., are not processed and kept as is. Both
domain descriptors and non-domain descriptors are kept in a long-term memory which will
be used for further extractions of single-term descriptors. Among the non-domain
descriptors, there are function words, e.g. "and", "of", "or", "but", etc., that have
approximatively the same frequency of occurrence in all document items of a library
(Salton, 1989).

Luhn (1957) proposed an indexing method based on the number of occurrence of single-
term descriptors. The corresponding algorithm is presented in Figure 2.1.

•

.

.

Eliminate common function words from the document item by consulting a special
dictionary (also called stop list) containing a list of high-frequency function words.

Compute the single-term descriptor frequency f(d,ri) for all remaining descriptors dj
• . • J

m each referent ri, specifying the number of occurrences of dj in ri.

Choose a threshold frequency T, and assign to each referent ri all the descriptors dj
for which f(dj,ri) > T.

Figure 2.1. Indexing Algorithm of Yankelovich, Meyrowitz and van Dam

Note 1. The level of granularity of a referent is variable. A referent can be a single-term
descriptor. In this case, the indexing method described above leads to the construction of a
thesaurus where the links between the descriptors are frequency-based. A referent can be a
section in a document or a document. If there are several libraries or collections, they can
be indexed as referents also.

Note 2. The single-term descriptor frequency can be seen as a good approximation of the
recall variable (see section 2.1.1.3). Indeed, if a single-term descriptor is repeated several
times in a referent, then there is a reasonable chance to expect that this referent deals with
such a single-term descriptor. Unfortunately, frequency does not solve the problem of
precision. We will have several referents having the same single-term descriptor in their list
of descriptors. This is again a good reason to put context around descriptors.

Note 3. Precision is better served by descriptors that occur rarely in referents. If n(d.jlD) is
the number of referents in a documentation D in which a descriptor di occurs, i.e. gaven a
descriptor d i it has n(djlD) possible referents in a documentation, Sp_k Jones (1972) found

that atypica] referent discriminator is given by log N/n(djlD), where N is the number of
referents in the documentation. A typical combined descriptor importance indicator wij of
this type is the product of the descriptor frequency by the inverse referent frequency:

wij = f(dj,ri), log

8 Here, context means the text surrounding the exlxacted word.

17

Usingwij theabovealgorithmcanbesignificantlyimprovedby theindexingalgorithm
presentedinFigure2.2.

,

.

Eliminate common function words from the document item by consulting a special
dictionary (also called stop list) containing a list of high-frequency function words.

Compute the combined descriptor importance indicator wij for all remaining
descriptors dj in each referent ri.

Choose a threshold frequency T, and assign to each referent ri all the descriptors dj
for which wij > T.

Figure 2.2. Descriptor/Referent Frequency-based Indexing Algorithm

2.1.2.2. Descriptor-Discrimination Value

A good way to discriminate between referents is to measure the distance between their
respective sets of descriptors. The more descriptors are shared by two referents the more

these referents will be perceived as similar. Similarity between rp and rq is expressed by the
function sim(rp, rq) as a function of the number of descriptors sfiared by both referents.
Implicating that the more high-frequency descriptors are kept, the more likely referents risk
being similar. 0vj is the descriptor-discrimination value of the descriptor dj and is
expressed as the difference between space densities before (Q) and after (Qj) the
assignment of descriptor dj to the referents of the documentation:

onvj=Q- Qj

where:

N N

Q=N(NI_I) E E sim(rp, rq)
p=l q=l

P_q

_vj can be combined with the descriptor frequency to build a new weighting formula that
can be used to refine descriptor assignments in executing step 3 of the algorithm in Figure
2.2:

Wij = f(dj,ri) • c)vj.

2.1.2.3. Conclusion

There are other methods for single-term descriptor indexing. In particular, when we want
to take into account potential important distinctions between descriptor occurrences in
relevant and nonrelevant referents. The probabilistic term weighting model (Salton, 1989)
makes explicit disdnctionsbetween occurrences of descriptors in the relevant and
nonrelevant referents of a document. We will not describe this model here. However, the

concept of relevance will be taken into account in our knowledge-based indexing
mechanism.

18

Theuseof single-termdescriptorindexingis justifiedonlyby operationalconsiderations.
Theuseof single-termdescriptorsintroducesambiguitiesby its lackof context,andalso
becausesingle-termdescriptorsareeithertoospecificor toobroadto beusefulin indexing.
Again,theconceptof contextis poppingup! Generally,whenpeoplearedoingindexing
manually,theynaturallyconstructdescriptorsthatarecompoundsetsof words,suchas
nounphrases.

Wecanusethefollowingmatrixto buildclassesof descriptorsthathavesimilar
assignmentto asetof referents(columnprocessing),or classesof referentsthathave
similarassignmentto a setof descriptors(row processing).

dl d2 ... dm

rl
r2

rn

Wll w12 ... Wlm
w21 w22 ... W2m

Wn 1 Wn2 • .. Wnm

where wii is the value of the descriptor di in the referent ri.
An usuhl method for narrowing descrilStors is the generation of phrases (compound

descriptors) consisting of sequences of single-term descriptors. Thesauruses, on the other
hand, can be used for descriptor broadening by replacing individual narrow descriptors
with the thesaurus groups in which the descriptors are included. We will develop both of
these methods in the following.

2.1.3. Compound Descriptor Formation

It is obvious that "Christmas tree" or "genealogical tree" is more specific than "tree". More
generally, we need to build compound descriptors when single-term descriptors have high
frequency to increase discrimination. Nonlinguistic (frequency-based) and linguistic
methods are generally needed in concert to build compound descriptors. The former
methods provide the necessary single-term descriptors that need to be augmented (by
computing their frequency and comparing it to a given threshold). The latter methods
provide a way to appropriately combine single-term descriptors together with other words.

If two compound descriptors have the same meaning (semantically identical) but are
syntactically different, it is usually better to keep both instances of the same meaning for
further pattern matching purposes. In other words, it is generally better to keep several
aliases of a descriptor to improve the information retrieval. For instance, "information
retrieval" and "retrieval of information" have the same meaning but do not have the same
syntax, and such descriptors may appear in one or the other form in a referent that we are

looking for.

2.1.4. Thesaurus Generation

If a descriptor is too narrow, i.e. its frequency is very small, then it may be convenient to
broaden its scope by attaching to it a set of other descriptors that are more general than the
descriptor itself. Let us give some useful rules that can be used to generate a thesaurus. A

19

thesauruswill berepresentedasasemanticnetworkwherenodesaredescriptorsandlinks
arerelationsbetweenthesedescriptors.

2.1.4.1. Enlarging Pattern-Matching Capabilities

Generally, descriptors have to be fully matched to get successful results. However, it often
occurs that appropriate transformation of descriptors may improve pattern matching
capabilities, such as removing suffixes recursively from the tail ends of words.

Removing suffixes.

1. Define a dictionary of suffixes, e.g., -ness, -ing, -er, -y, -ic, -ical, etc.

o Define a set of rules for handling exceptions, e.g.,
- restore a silent e after suffix removal from certain words to produce "hope" from

the original "hoping" rather than "hop";
- delete certain double consonants such as b, d, g, 1, m, n, p, r, s, and t after suffix

removal, so as to generate "hop" from "hopping" rather than "hopp";
- use a final y for an i in form such as "easier", so as to generate "easy" instead of

"easi".

Other capabilities include the detection of spelling mistakes or incomplete spelling.

2.1.4.2. Aliases

Aliases are terms defined for the same concept. Generation of aliases is also a good way to
enlarge the scope of an initial descriptor. It is usually done manualIy. For this reason, end-
users should have the possibility to generate their own aliases. Aliases can be
abbreviations, acronyms, or different names having the same meaning as the original
descriptor.

2.1.4.3. Conclusion

Constructing a thesaurus in a given subject area is always demanding. This process is
usually performed manually even if automatic thesaurus-construction systems already exist.
Those are generally classifiers. Furthermore, the effectiveness of thesauruses they produce
is questionable outside the special environment in which they are generated (Sahon, 1989).
Enlargement of pattern-matching capabilities and aliases are not the only possibilities for
constructing a thesaurus, they have been given as examples. More generally speaking,
related descriptors will be constructed around a given descriptor with appropriate semantic
links.

2.1.5. Some Information Retrieval Models

In this section, we will present four models that are used to retrieve information:

vector space model,
automatic document classification,

probabilistic retrieval model,
fuzzy set retrieval model.

20

2.1.5.1. Vector Space Model

2.1.5.1.1. Description of lh¢ method

Goal of the method: compute similarity coefficients between queries and referents.

Let W be the descriptor-referent matrix:

dl d2 ... dm

rl
r2

rn

Wll w12 ... Wlm
w21 w22 ... W2m

Wnl Wn2 ... Wnm

where _r={rl, r2 rn} are n distinct referents, d={dl, d2 dm} are m distinct

descriptors, wij represents the value of descriptor dj in referent ri. We will adopt the vector
notation:

l:=W.d

Similarly, let V be the query matrix:

dl d2 ... dm

ql
q2

qn

vii v12 ... Vim

v21 v22 ... V2m

Vnl Vn2 ... Vnm

where O={ql, q2 qn} are n distinct queries, d={dl, d2 dm} are m distinct

descriptors, vij represents the value of descriptor dj in query qi. We will adopt the vector
notation:

O=V .d

Typically, if we assume boolean descriptor membership to referents, we have:

If dJ is in ri then wij = 1 else wij -- 0
If di is in qi then vij 1 else vij = 0.

21

If weassumecontinuousmembership,thenvaluesbelongto theinterval [0,1]. In both
cases,if we representdescriptorsasvectorsin a hyperspace,thenareferentcanbe
representedaslinearcombinationof descriptorssuchthat:

m

ri = X W ij dj

j=l

Given a referent rs and a query qp represented in the linear combination form presented
above, the referent-query Similarity can be computed as:

In

qp.rs = X VpiWsjdi.dj

i,j=l

In practice, it is generally assumed that the descriptors are not correlated, i.e., vectors are

orthogonal:

fori _j, di. d',l =0
fori =j, di d-i= 1.

This assumption leads to following expression of the referent-query similarity:

rfl

sirn(qp, rs) = qp. rs = _ Vpi Wsi

i=l

The same kind of computation can be used to measure the similarity between referents:

m

sirn(rp, rs)= rp. rs = _ wpi wsi
i=l

2.1.5.1.2. Advantage_ of th¢ mcthod

There are three main advantages to computing similarity coefficients between queries and
referents.

1. Referents can be arranged and displayed to users in decreasing order of

corresponding similarity with the query.

2. The most relevant referents can be displayed according to a threshold applied to these
similarity coefficients.

, Referents retrieved early in the search, which are most similar to the query, may help

generate improved query formulation using relevance feedback (Salton, 1989).

The measure introduced in section 2.1.5.1.1, i.e., the inner product (or sum of products) is

not the only possible measure. There are other normalized measures that are presented in
Appendix A.

22

2.1.5.1.3.Disadvantages of the method

The orthogonality assumption in the basic vector-processing model is the major
disadvantage in this method. Indeed, independence between descriptors is not guaranteed.

However, descriptor correlations can be given (or assumed) to compute the similarities.

2.1.5.2. Automatic Referent Classification

2.1.5.2.1. Description of the method

This type of method focuses on the fact that descriptors of related referents should appear
close together. In other words, if referents are characterized by patterns of descriptors, a set
of related referents should lead to the same cluster of descriptor patterns. Figure 2.3

presents various referents organized by clusters. Each elementary cluster has a centroid.
These elementary clusters are classified into superclusters that have a supercentroid. The
overall documentation has an hypercentroid that represents the highest level of clustering.
the advantage of the referent classification is that the search strategy for clustered referents
is equivalent to a tree search such as presented in Figure 2.4.

Hypercentroid

• Supercentroid

0 Centroid

x Referent

X
×

Do B

X

X

0 E

X

×
X

0
0

X •
X

Figure 2.3. Typical clustered referent organization.

23

4

Hypercentroid

Supercentroids

Centroids

x Referents

Typical search path

Figure 2.4. Search strategy for clustered referent organization of Figure 2.3.

2.1.5.2.2. Hierarchical cluster generation

The basic algorithm for hierarchical incremental clustering is presented in Figure 2.5.

1. Compute all pairwise referent-referent similarity coefficient [N(N-1)/2 coefficients]
using the last formula of section 2.1.5.1.1 or an equivalent from Appendix A.

.

3.

Place each of N referents into a class of its own.

Form a new cluster by combining the most similar pair of current clusters i and j;

update similarity matrix by deleting the rows and columns corresponding to i and j;
calculate the entries in the row corresponding to the new cluster i+j according to a
chosen cluster generation strategy.

4. Repeat step 3 if the number of clusters left is greater than 1.

z

Figure 2.5. Hierarchical cluster generation algorithm.

Cluster generation strategies.

1. Single-link clustering: 0nly the most similar pairs of referents are kept, i.e., for each
row p the similarity coefficient for the new cluster are computed as follows:

max sim(rp, rs)
S = l,n

2. Complete-link clustering: only the least similar pairs of referents are kept, i.e., for
each row p the similarity coefficient for the new cluster are computed as follows:

min sim(rp, rs)
S= 1,n

24

o Group-average clustering: the similarity coefficients of the new cluster are computed
as the average pairs of referents, i.e., for each row p the similarity coefficient for the
new cluster are computed as follows:

n

n-k _ sim(rp, rs)
S=|

Hierarchical cluster generation methods are generally very expensive in calculation time.
For n referents this kind of method requires N 2 log N 2 operations. However, they provide
a unique set of well-formed clusters for each set of data. Furthermore, the resulting cluster
hierarchy is stable, i.e., small changes in input data do not lead to large rearrangements in
the cluster structure.

Example of single-link clustering.

Let {A, B, C, D, E, F} be a set of n=6 referents. Let the similarity matrix between pairs of

referents be the following:

A B C D E F

A
B
C
D
E
F

0.8 0.5 0.6 0.8 0.9
0.8 - 0.4 0.5 0.7 0.8
0.5 0.4 0.3 0.5 0.2
0.6 0.5 0.3 0.4 0.1
0.8 0.7 0.5 0.4 - 0.3
0.9 0.8 0.2 0.1 0.3

te.___"

max max sim(rp, rs) = sim(A, F) = 0.9
p = 1,6 s = 1,6

The similarity pair is AF, and the single-link structure is:

The new similarity matrix is:

AF B C D E

AF
B

C
D
E

- 0.8 0.5 0.6 0.8
0.8 - 0.4 0.5 0.7
0.5 0.4 0.3 0.5
0.6 0.5 0.3 - 0.4
0.8 0.7 0.5 0.4 -

25

Thismatrixhasbeenrecomputedby usingthefollowingformula:

Vrse {B,C,D,E}, sim(AF, rs)= max [sim(A, rs),sire(F,rs)]

t_:

max max sim(rp, rs) = sim(AF, E) = 0.8
p = 1,5 s = 1,5

The similarity pair is AE, and the single-link structure is:

The new similarity matrix is:

AEF B C D

AEF

B

C

D

- 0.8 0.5 0.6
0.8 - 0.4 0.5
0.5 0.4 0.3
0.6 0.5 0.3 -

This matrix has been recomputed by using the following formula:

Vrse {B,C,D}, sim(AEF, rs) = max [sim(AF, rs), sire(E, rs)]

msx msx sim(rp, rs) = sim(AEF, B) = 0.8
p= 1.4 s= 1,4

The similarity pair is BF, and the single-link structure is:

26

Thenewsimilaritymatrix is:

ABEF C D

ABEF
C
D

- 0.5 0.6
0.5 - 0.3
0.6 0.3 -

Thismatrixhasbeenrecomputedbyusingthefollowing formula:

Vrse {C,D}, sim(ABEF, rs)= max [sim(AEF,rs), sim(B,rs)]

max max sim(rp,rs)= sim(ABEF,D) = 0.6
p = 1,3 s = 1,3

The similarity pair is AD, and the single-link structure is:

0.6

"oE '"o B

Ao" _oF

The new similarity matrix is:

ABDEF
C

ABDEF C

- 0.5
0.5

This matrix has been recomputed by using the following formula:

sim(ABDEF, C) = m ax [sim(ABEF, C), sim(D, C)]

te__e.p_-

max max sim(rp, rs) = sim(ABDEF, C) = 0.5
p = 1,2 s = 1,2

The similarity pair is AC, and the final single-link structure is:

27

0__C

A,_F _o5 "'o B

2.1.5.2.3. Heuristic clustering methods

Heuristic clustering methods produce rough cluster arrangements rapidly at relatively little
expense. Generally, it is interesting to introduce heuristics to reduce undesirable cluster
structures, such as:

- limiting the number of elements in a cluster by splitting this cluster into several clusters
having a suitable size, for instance the following structure:

can be rearranged in the following way:

- isolating dense regions of the documentation, i.e., identifying elements in close

proximity with other elements (both referents and clusters), and creating a new cluster
seed. For instance, in the above example, if the first three referents are defining a dense

region, the following transformation can be performed:

28

I
I

tO_

2.1.5.2.4. Search in cluster trees

Once a cluster tree has been built, conventional search methods can be used. Generally best
first methods are used that take into account similarity coefficients on the tree nodes.

2.1.5.3. Probabilistic Retrieval Model

Probabilistic retrieval methods are likely to give good results if they are validated with
reasonable sampling. The probabilistic model can include descriptor dependencies and
relationships, and major parameters such as the weighting of query descriptors and the
form of query-referent similarity are determined by the model itself. The corresponding
model is based on the probability of relevance P(rel) of a referent. The probability of
nonrelevance is defined as:

P(nonrel) = 1 - P(rel).

al (a2) is a cost parameter associated with the retrieval of a nonrelevant (relevant) referent.
The main idea is to satisfy the corresponding relation:

a2 .P(rel) _ al [1 - P(rel)]

or_

P(rel) _ al > 0
g = 1 -P(rel) a2

If we assume that the cost parameter al and a2 are equal, the evaluation of g will be done
using other parameters w, i.e.:

g(w) + 1 =
P(rellw) P(rellw)

1 - P(rellw) P(nonrellw)

29

UsingBayes'theorem:

P(wlrel) . P(rel)

g(w) + 1 = P(wlnonrel) x P(nonrel)

That leads to the logarithmic expression (that must be non negative):

P(wlrel) P(rel)

log (g(w) + 1) = log P(wlnonrel) + log P(nonrel)

where P(rel) (P(nonrel)) is the a priori probability of relevance (nonrelevance) of any

referent. Assuming that the descriptor distributions in the referents of the documentation
follow the Poisson binomial distribution, the quantity P(xlrel) can be derived from:

in

P(wlrel) = I_ pW_(l_pi)l_w_ [I+A]
i=l

where A is a formula given by Bahadur and Lazarsfeld (Yu, Luk & Siu, 1979), w=(wl,
w2 , Wm) a collection of binary terms, and pi is the occurrence probability of descriptor

di in the relevant referents, i.e. Pi = P(wi=llrel).
In practice, there is no hope to compute A because there will not be enough data to do it.

One assumption would be to assume A=0. In this case, the probabilistic model becomes a
form of vector space model (see section 2.1.5.1). Another alternative would be to take into

account only some of the more important pairwise descriptor correlations 9, and use the
well-known tree-dependence model where all descriptors are assumed to depend on exactly
one other descriptor in the descriptor set.

9 In that case, it follows:

in

P(wlrel)= H P(wmilwmgi_) 0<j(i)<i
i=l

where

P(WklWmo) = P(Wk)

P(wilwj(i)) = [p_" (l:pi)l-wq w_'_[qW_(l_qi)l-wqWj(_)

Pi = P(wi=llwj(i)=l)

Pi = P(wi = 11wj(i)=0)

After substitutions, the following formula is obtained:

m

log P(wlrel) = _ (wi 1ogpi + (1-wi) log(1-pi))
i=l

m[. 1-pi g_pP_]+'E Wj(i) IOg_ -I- WiWj(i) lo "1-constants
i=l

30

2.1.5.4. Fuzzy Set Retrieval Model

2.1.5.4.1. Quantification of Imprecision

The following queries are imprecise :

ql -- This book was published recently

q2 -- This book was ordered before 1984

Fuzzy sets

The query q2 represents a simple imprecision concerning the value of the date, i.e. the book

is an element of the set of books ordered during the interval [1900, 1984], for example.

This is a weighted interval. The query ql corresponds to an imprecise predicate (Recently).

If the predicate Recently is defined on a set of dates, it is impossible to represent it in a

satisfactory manner by a normal interval. The set of dates which defines Recently is a fuzzy
set.

A fuzzy predicate A is defined by a function fA in a given domain (dates for example) in

the interval [0, 1]. This function is called a membership function. In Figure 2.6, each

point represents the membership degree (ordinate) of the predicate Recently for a particular
date (abscissa), i.e.:

if fA (x) = 1,
if fA (x) = 0,

then x satisfies A perfectly

then x absolutely cannot satisfy A

1.0

o.o

J i Recently

+++++Dates

v

1984 1985 1986 1987 1988

Figure 2.6. Membership function Recently.

Fuzzy sets and possibility
A fuzzy set (Dubois & Prade, 1980, 1985) can be used to represent a poorly defined
constraint. Such a constraint implies a set of more or less acceptable values. Consider an
event A (for example, A = Date of publication around 1977). A measure of possibility
I-I(A) can be built based on a possibility distribution n(x), where x is an elementary event,
as follows:

H(A) = S U p _(x)
xEA

31

A possibilitydistribution1°representsafuzzysetof more or less possible values for a

variable. Consequently, one can interpret the possibility that the proposition X has the value

x knowing that X is A, as the membership degree of x to A, i.e. n(x) -- iA(x). Thus, a

fuzzy set permits the definition of a set of more or less possible values for a variable limited
by a poorly defined constraint.

2.1.5.4.2. Truth of a Proposition

In the context of intelligent assistance, the truth of a proposition is its conformity with the

facts or reality as perceived by users.

Representation of an imprecise proposition
Consider the proposition: R = d is A (for example, this document was published recently),

where d is a given subset of a set D (for example, Documents), and A is a predicate,

sometimes vague (e.g. Published recently), which limits the possible values of d. The

content of a proposition may be represented by a possibility distribution ha(d) associated

with the function a(d) (for example, the date of publication of the document d). ha(d) is an

application of a given set ×={xj} (for example, the dates of publication) in the interval [0,
1]. This is the membership function lA associated with the predicate A:

V x E X, tea(d) (x) = fA (x)

Fuzzy pattern matching
Consider two propositions: a query Q and a characteristic of a database a(d). The two

propositions are represented by the possibility distributions no and ha(d) respectively.
Consider the interval [N(a(d) I Q), I-I(a(d) I Q)], where l-I(a(d) I Q) and N(a(d) I Q) are

the possibility and the necessity respectively that a(d) is true for a given query Q:

I-[(a(d)I Q) = SUp {min lta(d)(X) }}
xEX

N(a(d) I Q) = inf {max { 1-nQ(X), n,,(d)(x)} }
xeX

I-I(a(d) I Q) evaluates the degree of intersection of nR(X) and rCa(d)(X). N(a(d) I Q)

evaluates the degree of inclusion of na(d)(X) in no(X).

If the datum is precise, then na(d)(X) is characterized by a possibility distribution of
zero for all points except one. In this case, 1-l(a(d) I Q) = N(a(d) I Q). This degree can be

interpreted as a degree of truth.

2.1.5.4.3. Knowledge Representation

A piece of basic information can be represented by the triplet (attribute, object, value),
where value is an element of the domain of the attribute under consideration, e.g.

10 The possibility of an event is calculated from the best case (in the possibility distribution), and not from
the accumulation of cases which are more or less good, as in probability theory. As a result, the possibility

of an event tries to evaluate its feasibility. If the possibility of an event A equals 1, it can occur that the

possibility of --,A also equals 1. If the necessity of an event A equals 1 (A is certain), then the possibility
and necessity of--,A equal 0. These results lead to the following theorem: N(A) = 1 - I-I(_A).

32

i

(date_of_publication, book_Y, 1972), (author, book X, Dupont). The value of an
attribute can be precise or imprecise. The possible values of an attribute can be represented

by a possibility distribution on its domain. A precise value is represented by a possibility
distribution of zero for every point except the point corresponding to that precise value,
where it has a value of 1. An unknown value is represented by a possibility distribution

equal to I for all points in the attribute domain.

The value of an attribute is often uncertain 11. This uncertainty is usually the result of a
lack of confidence (of users) in the source of the information. Subjective evaluation scales
are used to take this type of uncertainty into account. For example, the scale shown in

Table 2.1 presents the association of various judgements on the subjective rating u. These
ratings correspond to subjective probabilities and permit "modulation" of the initial
membership functions which characterize only the imprecision. It should be noted that this
type of scale may be expressed in the form of confidence intervals instead of simple
ratings.

Table 2.1. Uncertainty rating scale.

Degree Judgement u

5 I am sure that the information is good 1.0
4 I think that the information is good 0.7
3 I don't know 0.5

2 I think that the information is not good 0.3
1 I am sure that the information is not good 0.0

=(x)

/,,
a b c d

X

T

Figure 2.7. Possibility distribution for a quantitative variable.

11 In speaking about uncertainty, two concepts are often mixed: imprecision on the one hand, and
uncertainty proper on the other. The concept of imprecision relates to "that which is not precisely known":
for example, the size of a physical device may not be known precisely, e.g., the pressure is between 40 mm
Hg and 360 mm Hg, and the pressure is normal. A precise version of these expressions would be, for
instance: the pressure is exactly 150 mm Hg; the pressure in tank 2 follows the equation of state of an ideal
gas, i.e. PV=RT, where V is the volume of the tank, T is the internal temperature and R the universal gas
constant. These statements are not necessarily true, however they are precise.

The concept of uncertainty proper is related to "that which is not necessarily true", e.g., it will rain
tomorrow, and valve V4 leaks. We will say that information is certain when it is considered to be true. A
fact, formalized as a proposition, is uncertain as long as its truth value is not proven.

33

_(x)

I Ida b c

x

Figure 2.8. Possibility distribution: inverse representation.

Quantitative attributes
It is common to use a trapezoidal representation for the possibili_ distributions of
quantitative variables. This type of representation is at the same t_me very simple, easy to
use and robust. It is a good approximation to the common-sense notion of precision. It can

be associated with the quintuplet (z, a, b, c, d), where z, a, b, c and d are such that

(Figures 2.7 and 2.8):

[b, c]
[a, b] U [c, d]
the complement of [a, d]
Z=I

z=O

Z = -1

is the preferred domain,

is the permitted domain,

is the unacceptable domain, and

for the regular configuration,

for a possibility distribution equal to 1 at all points,
for an inverse configuration.

Uncertainty affects imprecision, i.e. the corresponding possibility distribution. We
consider the following three observations.

1. 'When the uncertainty increases, the corresponding possibility distribution "expands".

2. When a proposition is absolutely uncertain (total ignorance), its possibility

distribution is equal to 1 for all points in the domain.

. When the certainty of the contrary proposition increases, it is necessary to consider
the complement to 1 of the possibility distribution of the proposition under
consideration.

Let u be the subjective rating attached to a given proposition p and (z, a, b, c, d) the

possibility distribution representing the imprecision of p. Taking into account the above
observations, the following consequences may be inferred. The resulting possibility

distribution (z', a', b', c', d') may be such that the preferred domain [b, c] and the

acceptable domain [a, d] are enlarged by a certain coefficient, for example 1/(2u-1). In
addition, we will have the following rules:

if0_<u<0.5 thenz'=-z,
if u = 0.5 then z'= 0,
if 0.5 <u < 1 thenz'=z.

For example, in the library management system BIBLIO, which we developed at the
Toulouse Research Center (CERT, France), six options have been chosen for entering a

34

date (year): in X, after X, before X, between X and Y, around X and recently. Five of the

corresponding possibility distributions are represented in Table 2.2 (after X and before ×
are symmetrical). Only the degrees of certainty 5 and 4 are represented, i.e. the degrees 2
and 1 are their respective complements to 1. Degree 3 corresponds to a possibility
distribution equal to 1 in all cases.

Table 2.2. Examples of the possibility distributions represented in BIBLIO.

Degree of certainty 5 Degree of certainty 4

I. L"lxl

0
X

y

X

rt(x)

!
i X

0
X _

j Ixl
X

0 m=..._

x i' "'-

1"_ _t(x)

x
X

0 -,.---
r

rt(x)

iJ _-__ ,_x
0

X r

L_(X)1-1 --

/ x
0 -----

X _

rt(x)

x y

jL Ixl

o
X

_t(x)

in X

after X

between X

and Y

around X

recently

Qualitative attributes

The possibility distribution associated with a qualitative attribute is represented by a set of

attribute pairs { ({Xl}, tl) ({Xn}, tn) } (see Figure 2.9).

The subsets {Xl}..... {Xn}are characterized respectively by the discrete possibility

distributions (tl In). This representation is conceptually simple and easy to
manipulate. In the library management example, the qualitative attributes could be, for
example, the names of authors or keywords. A request from a user might be expressed in
the following manner:

x is A1 or A2 ... or An.

For example, "1 think that the name of the author is Dupond (1.0), but it could also be
Durand (0.6) or Smith (0.4), or someone else (0.1)".

35

_(x)

{AI) {A2}

X

v

{A3} {A4}

Figure 2.9. Possibility distribution for a qualitative variable.

In the example, {A4} is identical to X- {A1, A2, A3}.

i

I
l

if X is the domain of the attribute, i.e. the list of authors, then this request takes the

following form:

{ ({A1}, 1.0), ({A2}, 0.6), ({A3}, 0.4), (X - {A1, A2, A3}, 0.1) }

The attributes may have either a well-defined value or an unknown value. If x is an attribute

and A a value of x, then two types of propositions are possible in the database:

x is A, for example the name of the author is Smith

which is represented by the possibility distribution:

{ ({A}, 1), (X - {A}, 0) }

and

x is unknown

which is represented by the possibility distribution:

{(x, 1)}

It should be noted that the two propositions x is A and x includes A are represented by the
same possibility distribution.

The uncertainty of the user can be taken into account as follows. If u is a subjective

probability associated with a given proposition "X is A" and {({A},I), (X - {A},0)} is the

possibility distribution representing the precision of "X is A", then the resulting possibility
distribution might be the following:

if0_<u<0.5 { ({A}, u), (X- {A}, 1) }
if u = 0.5 {(X, 1)}
if 0.5_<u< 1 { ({A}, 1), (X- {A}, l-u) }

Examp/es:

1, Let the proposition the publisher is CERT have a degree of certainty corresponding to
a subjective probability of 0.4. The possibility distribution associated with this
proposition is:

{ ({CERT}, 1), (X - {CERT}, 0.4) }

36

.

where X is the domain of the attribute publisher.

Let the proposition the author is Hugo have a degree of certainty corresponding to a
subjective rating of 0.0 (the user is sure that the name of the author is not Hugo). The
possibility distribution associated with this proposition is:

{ ({Hugo} , 0), (X- {Hugo}, 1) }

where X is the domain of the attribute name of author.

2.1'.6. Conclusions

What we called conventional approaches to indexing and information retrieval base their

performance according to measures of recall and precision. They do not include costs
involved in incremental search at a terminal. In particular, user-friendliness of the interface
is likely to improve the cognitive orientation of the search. They are all rigid and very
dependent on their own normative model. Furthermore, none of these methods are context-
sensitive. However, they can constitute very good startup procedures for more knowledge-
based approaches to indexing and information retrieval.

2.2. HyperText

2.2.1. History and Definitions

Vannevar Bush, who was President Roosevelt's science advisor, envisioned in 1945 new

information organization and retrieval concepts which led to a machine called a Memex.
The idea was to allow anyone to browse and make associative links between any references
in a library. Douglas Engelbart was the first scientist influenced by Bush's concepts.
Engelbart's research at the Stanford Research Institute (SRI) was centred around the
augmentation of the human intellect (Engelbart, 1963). In the early 1960s, he began to
develop the on-line system NLS. This system was renamed Augment when Engelbart was
at McDonnell-Douglas. Augment is an on-line work environment. In its original form, it
served as: a storage system for memos, research notes and documentation; as a
communications network, since on-line conferencing was possible; and as a shared
workspace where researchers could plan and design projects. In order to browse faster in
Augment, Engelbart invented the mouse as an input device. Ted Nelson coined the word
HyperText to mean nonsequential writing with free user movement along links (Nelson,
1967). Advanced electronic publishing was born with the Xanadu system developed by
Nelson (1988).

At its most basic level, HyperText is a database management system (DBMS) that lets
users connect screens of information using associative links (Fiderio, 1988). It is a
combination of natural language text with the computer's capacity for interactive branching,
or dynamic display of nonlinear text which cannot be printed on a conventional page
(Nelson, 1967).

2.2.1.1. Linear text

When reading a book page after page, the contents are scanned in a linear manner.
Similarly, if a programmer wishes to insert a useful comment in a program, it is usual to

37

insertthecommentaftera lineof code.In thisway,LISPcodeandcommentscanbe
mixed,i.e. twotypesof informationaremixedatthesamelevel:

(defun hypertext ()

(cond (mouseClick

;; will provide a definition for
;; HyperText when clicked

selfZone) (print comment)))

When accessing a file on a computer, a hierarchy of directories is used which generates a
linear path. For instance, if users need to go from Text- 1 to Text-2, they have to backtrack
to the Directory level and go down to Text-2 (Figure 2.10). In other words, there is no
direct link possible between Text-1 and Text-2.

ComputerSystem

Figure 2.10. Linear access to a text using a classical computer operating system.

2.2.1.2. Nonlinear text

In the above example of LISP code mixed with comments, an alternative using a
HyperText system would be to allow the programmer to click on any word of the LISP
code and for example create a window for the comment. This approach also allows
modularity. Furthermore, in the example presented in Figure 2.11, if users need to go from
one text to another which is not in the same directory, in the linear approach they will have

to backtrack and find a new linear path in the hierarchy allowing them to go to the desired
text. In the nonlinear approach, users simply build a link between the current text and the

target.
HyperText is also called nonlinear text. The concept of HyperText is quite simple:

windows on the screen are associated with objects in a database, and links are provided

between these objects, both graphically and in the database (Conklin, 1987). A HyperText

system may be described as a system including a database which is a network of textual or
graphical nodes, and windows on the screen corresponding one-to-one with nodes in the
database. The HyperText database is a directed graph. Note that a small number of nodes

are open on the screen at any one time.

2.2.1.3. What a HyperText system is not

Conklin distinguishes HyperText from other computer software by pointing out what it is
not. It is not a window system like Windows, which has no underlying database. It is
more than a conventionalfiIe system which does not have the sophisticated link concept

38

availablein HyperTextsystems.It is notanoutline processor, which provides no support
for references between outline entries. It is not a text formatting system, which is purely
hierarchical and does not provide any mechanism for navigating within a document. It is
not a conventional database management system (DBMS), which does not provide any user

interface associating objects in the database to objects on the screen.

Display screen

A
B

..._"'i

HyperText database

Figure 2.11. Association of displayed objects
with objects in a database (Conklin, 1987).

2.2.1.4. Browsing

Browsing is the navigational mechanism provided by HyperText. A HyperText document
can be browsed either by clicking on any screen object, following the links and opening
windows, by searching the network for a string (information retrieval) or by using an
overview network (Figure 2.12) of the HyperText document and navigating with it (like
navigating in a country by using a map). In Figure 2.12, for example, users are provided

with an explicit map telling them that if they are watching node 13(e.g. a page of text), then

they can get more information by clicking on the descriptor f and get the node F (e.g. a

graphics display), or on the descriptor e and get the node E (e.g. a text definition of the

descriptor e).

2.2.1.5. Implementation

On-line reference manuals and documentation were the f'trst types of applications for

HyperText. The main goal of Bush's Memex system was to mechanize the scientific
literature (Bush, 1945). Memex used microfilms and photocells. It was a very large library

39

of notes,photographsandsketches.Bushbuilt a link mechanismto go from anypointto
anyotherpointin Memex.

Display screen with overview browser HyperText database

A

[]

b

Figure 2.12. Browsing through a HyperText using an overview network.

Public information systems, such as the Medical Handbook developed by Mark Frisse and
coworkers, show the important problem of information retrieval in large HyperText
systems. Retrieval requires a combination of browsing and full-text document retrieval
techniques. Frisse's work shows that indexing remains one of the most difficult problems
(Frisse, 1987; Frisse & Cousins, 1989). Vannevar Bush wrote that "our ineptitude in
getting at the record is largely caused by the artificiality of the system of indexing". Trigg's
thesis on the Textnet concerned a "network-based approach to text handling for the on-line
scientific community" (Trigg, 1983). Note that electronic mail has been a major factor in

the recent public success of HyperText.
Authoring systems constitute another class of HyperText applications. These systems are

designed to help users formalize complex concepts. For instance, there are authoring
systems for editing tutorials or specifications of systems to be designed. Horst Rittel and
his students (Rittel & Webber, 1973) introduced the concept of issue-based information
systems (IBIS) to solve problems that cannot be solved by traditional systems analysis.
IBIS systems are a combination of teleconferencing systems and HyperText. IBIS systems
have three types of nodes: issues, positions and arguments. They use nine types of
relations to link these nodes: Issuggested_by, Responds_to, Questions, Supports,

Objects_to, Specializes, Generalizes, Refers_to and Replaces (Figure 2.13).
Cooperative work systems were introduced by Douglas Engelbart, who was interested in

augmenting the human intellect. His NLS system was designed as an experimental tool
which allowed people to store specifications, plans, design, programs, documents, reports,
memos, bibliography and reference notes, etc., and do outlining, planning, designing,
debugging and "a good deal of our intercommunication, via the consoles" (Engelbart,
1963). This was a forerunner of office automation and electronic mail systems. Designing
systems for augmenting the human intellect is a closed-loop process between design and

40

operations.Rapidprototypingis very importanttothisprocess.In a similarvein,Engelbart
is currentlypromotingtheideaof computer supported cooperative work (CSCW) with his
bootstrapping project at Stanford University.

t obj, ts o 1.f A,gu, ,ntli[,,,uo, t

Generalizes Responds_to . Argument 3 I

/ I Position2 /

I \
o .y

Figure 2.13. Example of a topology of an IBIS network.

Browsing systems such as ZOG, developed at Carnegie Mellon University, involve
large databases of small segments which can be displayed on a screen (McCracken &
Akscyn, 1984). The commercial version of ZOG was called knowledge management
system (KMS). Each segment of KMS is a frame, as shown in Figure 2. I4 (Akscyn et al.,
1987). In 1982, KMS was installed and used as a computer-based information
management system on a nuclear-powered aircraft carder.

The University of Maryland has developed the Hyperties project to get an experimental
environment to study HyperText and a product which is a documentary about Austria and
the Holocaust (Shneiderman, 1987b). Hyperties runs on an IBM PC with or without touch
screens. Document Examiner provided by the Symbolics company is certainly the most
advanced of the on-line help systems (Walker, 1987). Unlike many HyperText interfaces,
Document Examiner does not adopt the directed graph (HyperText database) as its
fundamental user-visible navigation model. Instead it offers context evaluation and context-
based searching capabilities that are based on consideration of the strategies that people use
in interacting with paper documents.

The best known HyperText is probably the NoteCards system developed at Xerox PARC
(Halasz et al., 1987). NoteCards is an information analyst's support tool. NoteCards
allows the gathering of information and production of analytical reports. It is written in
LISP and is an open architecture that allows new applications to be built on top of it. Its
primary purpose is experimentation with HyperText.

41

Frame
title

Tree
items

Command
items

/
KMS: A Distributed HypertextE_nfl

For the past six years, we have been developing a commercial
hypermedia system (KMS) based on our previous research with
the ZOG system at Carnegie Mellon University. This paper
describes KMS and how it addresses a number of hypermedia

design issues....

o 1. Background• Introduction to KMS
I_. o 3. Hypermedia Design Issues

o 4. Conclusion
o Acknowledgements
o References

o @TitlePage
o @Notes

@ Draft 7

='- Save Exit Rest Prey Next Home Goto Info Disp Linear Print...

Figure 2.14. Example of a KMS frame.

Frame
name

Frame
*_ body

Special
• items

The Institute for Research in Information and Scholarship (IRIS) at Brown University is
one of the oldest HyperText centres. The Intermedia project was developed both as a tool
for professors to organize and present their lesson material via computer, and as an
interactive medium for students to study the material and add their own annotations and
reports (Yankelovich et al., 1985). Intermedia provides tools such as text, graphics and
timeline editors, a 3D viewer and a scanned-image viewer. A new construct, called a web,
was introduced in Intermedia for the implementation of context-dependent link display. The
Intermedia browser has two kinds of displays: a global map (for global navigation) and a
local map (for local navigation within a single document).

Tektronix HyperText Abstract Machine (HAM) is a general purpose, transaction-based

server for a HyperText storage system (Campbell & Goodman, 1987). The server is
designed to handle multiple users in a network environment. The storage system consists
of a Collection of contexts, nodes, links and attributes that make up a HyperText graph.
Several of the HyperText architectures described above can be implemented easily using the
HAM's storage model.

The most commonly used HyperText system is undoubtedly HyperCard distributed by

Apple on the Macintosh. We will take HyperCard as an example and describe it in
Appendix D.

Applications of HyperText systems include electronic publishing, on-line technical
manuals, on-line instruction manuals, on-line help for other software, project management,
issue _a[ysis, on-line policy manuals, group presentations via large-screen projectors,
financial modelling, user interfaces to videodisc-based materials, user interfaces to expert
systems, software engineering, computer-assisted foreign language translation, operating
system shells, engineering design and research in general (Akscyn et al., 1987). For
example, there iscurrently a research project at Xerox PARC on HyperText and knowledge
representation to design an instructional design environment ODE), i.e. an environment for
designing teaching tools. HyperText features in the IDE software are used to capture and
organize into one coherent framework the entire corpora of theoretical, instructional and
content material that affect foreign language instruction (Jordan et al., 1989).

42

2.2.2. From Text to Hypertext

An alternative to manual composition of HyperText databases is conversion from existing
text, millions of pages of which already exist in industry and government agencies.
Moreover, electronic mail is constantly increasing and produces more and more text
information to process and reorganize. Such conversion often requires analysis of the text
document in order to determine how best to represent its structure. Generally the intentions
of the authors are not at all clear in the flat text (as opposed to the HyperText). The medium
used for delivering a document can greatly influence the way in which the document will be
perceived and understood. Furthermore, authors generally use the medium to improve the
clarity of what they want to convey. Raymond & Tompa (1987) analysed this problem of
conversion on the Oxford English Dictionary. They observed that a document can be
broken into many networks of arbitrarily chosen pages or nodes, but not all of these are
suitable representations of the whole content of the original text. HyperText nodes are text
fragments which have the special characteristic of being both semantically and syntactically
discrete. Ideally, each node represents a single, independent concept which is a candidate
for classification. However, not all concepts are representable in this fashion. In this case,

syntactic fragmentation may lose semantic information. The fact that links are also discrete
and explicit tends to lead to a loss of text richness, where links between concepts are
implicit. In other words, the way a document decomposes into nodes and links will affect
the overall content of the document.

Conversion from text to HyperText makes the implicit structure explicit. To illustrate this

conversion process, we will take an example of the conversion of the NASA
Documentation for the Space Station "Freedom" from the original paper documents to a
HyperText system. Although this work is still a research project, it illustrates some of the
possibilities offered by HyperText technology. The HyperText product is called Computer
Integrated Documentation (CID) (Boy, 1989b). The idea of integration is essential. It
covers the integration of information available in different modes (text, graphics, sound,
images) and includes the concept of context of search (integration of the user). It also
covers the incremental construction of system documentation from design to the final
operation of the system (integration of knowledge). The process described can be adapted
easily to any other technical documentation.

2.2.2.1. Description of an example of paper documentation

The complexity of modem engineered systems stresses the need for good documentation
systems. Such documentation is very labour-intensive to manage and maintain, requiring a
great deal of expertise and development time. It is important to note that this documentation
is most useful and necessary during the actual operations of the systems that it describes.
Furthermore, most documentation systems (generally paper-based) are not self-explanatory
because users need cross-references and so his desktop quickly becomes covered with
documents.

Designing a complex system like the Space Station is an iterative process. Its
documentation system is designed to handle a huge amount of information and is organized
as follows. There is a Program Requirement Document (PRD) which is the central
document of the document network. It establishes the highest-level requirements associated

with the Space Station Program. Generally, the other program documents develop the PRD
topics in more detail. Each document, including the PRD, has a baseline issue and
revisions. Indeed, technical documentation is developed incrementally. A new directive
may specify changes to a particular document, which leads to a revision. Based on this
analysis, two dependency graphs can be drawn: the development dependency graph and the
revision dependency graph. The development dependency graph is a goal-oriented structure

43

(Figure2.15).A documentat leveln specifiesgoalsto bedevelopedin documentsat level
n+l. In thepresentexample,thePRDdefineslevelzeroof thedevelopmentdependency
graph.The revision dependency graph is a history-driven graph (Figure 2.16) and
describes the history of revisions of a given document.

I Centraldocument] Level0

_ _o_ument
[Document I [Document I IDo I Level1

Oo umon I OOrCUm"o'l 'eVe,=

I OOcu=,,O I00¢0=,,0,1

Figure 2.15. Development dependency graph.

Directive 1 I

Directive 2

Directive 3 I

I Baseline issue I

Revision A

Directive 4 I

Directive 5 I

Directive 6 I

Revision B

Revision C /
RevisionD I

Figure 2.16. Revision dependency graph.

Directive 7 I

Functional fragmentations of paper documents are made according to the task involved.
Each document includes the following major nodes: a description of the document (baseline
issue, revisions, directives), a preface, a table of contents, a body of text segmented into
sections and subsections, an abbreviations table, a definitions table and appendices (Figure

2.17). We will call a "macro" link a set of links between two major nodes. Each major

44

node may contain a hierarchy of nodes. For instance, in the body of text, there is a
hierarchy of sections. There are links between sections which are linear (section to next
section) and nonlinear (reference to a section other than the next one). There are references
to other major nodes within a document (the context of the document is retained) and
sometimes to other documents (the context of the document is changed to that of another
document).

2.2.2.2. Modelling the nodes and the links

Nodes include part of the original text (including graphics). Links may have various
meanings: abbreviation-of, definition-of, development-of, go-to-section, show-graphics-
of, find-information-on, etc. The links are also called actions because they are activated by
users when they are browsing the CID. Links are built as follows. A script is attached to
any part of the text (or graphics) which is recognized as a relevant descriptor, the concept
of which is very important in information retrieval (Sahon, 1989). A descriptor is defined
as any word or phrase (or piece of graphics) which will provide a rich precondition for a
search in the documentation HyperText database.

Description

Preface

Table of contents

Body of text

Section level 1

Section level 2

Section level 3

I I
I I

!m

Abbreviations

Definitions

II

Appendices

Figure 2.17. Description of a document (main nodes and "macro" links).

45

Building such descriptors requires expertise in the domain of investigation. We call a
referent any part of the text which is linked to a descriptor. In a regular book, the table of
contents provides a list of descriptors (section rifles). These descriptors are organized
hierarchically and have a one-to-one mapping with the corresponding pages.
Unfortunately, in general, a descriptor may be linked to several referents. Thus, users may
not find the relevant information in the first referent found. An example of this can be
found in any index at the end of a book. The index is a list of descriptors followed by a list
of numbers (pages) indexing the referents in the text. For instance, "word-1, 56, 177, 306"
means that the "word-l" can be found on page 56, page 177 and page 306. The role of
indexing is to bind descriptors to appropriate locations in the document. In the CID, any
part of the document can provide descriptors which are linked to other parts of the
document or to other documents. Generally, beginners (people who are not familiar with
the book being explored) browse through the book using the table of contents (hierarchical
browsing). As they become more knowledgeable about the contents of the book, they are
able to understand the meaning of some of the descriptors available in the index. Thus, they
can begin to use the index. If they are using the index for the fLrst time, they do not have
any reason not to select the first page provided. They go to this page. If the corresponding
information is relevant, they are satisfied and the retrieval process is finished. If the
corresponding information is not relevant they generally go back to the index. It would then
be rational to try the second page proposed. This is a backtracking process. People are not
good at backtracking. They tend to build context around the descriptors already used for the
next time! For instance, they tend to remember that a descriptor was successful in a
particular situation, although this memory does not generally last weeks or months
(conversely, it does in a machine.)

2.2.3. Conclusions

Hypertext technology is very interesting to develop appropriate interfaces to documentation
systems. It provides non-linear access to information. However, hypertext systems are not
providing any indexing mechanism that allows users to retrieve the right information at the
right time. For this reason, another technology must be implemented to bridge this gap. As
search in documentation is very dependent on the knowledge users have on the way to
retrieve such or such information in such or such context, knowledge-based techniques are
presented as possible solutions in the next section.

2.3. Knowledge-Based Systems

Knowledge approaches to indexing are generally known as concept-based search. One
challenge is to understand how to relate useful concepts to pieces of information. Indexing
becomes the process of conceptualization of documents, i.e., building conceptual
descriptions (that can be called descriptors) of appropriate documentation fragments
(referents). The main difference with conventional techniques will be that descriptors will
be semantically linked between each other. Thus, inference from concept to concept will be
possible.

Information retrieval in a document can be seen as problem solving. In artificial
intelligence (AI), problem solving is generally represented as search in a problem space.
Many systems have been developed that search problem spaces by applying operators and
expanding new states until they find a path between an initial state (query) and a final state
(desired referent). In information retrieval, the main problem is that the final state (or goal)
is not always well formalized. Users are the unique judge to declare if the goal has been
reached or not. Furthermore, a good information retrieval system must be able to retrieve

46

informationwithoutlettingtheamountof retrievedinformationbecometoolarge.The
underlyingmechanisminvolvesconstraint-basedsearch.TheAI andCognitiveScience
communityhasbeenrecentlyfocusingon thedevelopmentof computationalmodelsof
humanproblem-solvingbehavior(Newell& Rosenbloom,1981;Anderson,1983;
Ohlsson,1987).

Otherattemptshavebeenmadein theareaof naturallanguageprocessing.In particular,
Quillian (1968)introducedthespreading-activationmodelthatallowstherepresentationof
connectionsbetweenconcepts.Onceaconceptisactivated,it is marked,andall the
semanticallyrelatedconceptsbecomeactivatedalso("markerpassing"ina semantic
network).In hisACT framework,Anderson(1976,1983)augmentedthecharacteristicsof
thesemanticnetworkby introducingthenotionof tracestrengthon thelinks,anda
numericallevelof activationoneachnode.Thistypeof memorymodelhasbeentaken
recentlyby Jones(1989)asasupportfor hismodelof retrievalin problemsolving.

OtherAI approachesto documentationinformationretrievalarebasedoncognitive
modelsof librarians'retrievalstrategies.As Chen& Dhar(1987)mention,to makelarge
informationbanksmoreaccessibleby computer,it is bestto first try to understandhow
referencelibrariansactuallyhelpusers,andthento tryandincludethesecapabilitiesin on-
line systems.Themajorproblemin incorporatingamodelof user-librarianinteractionsinto
thesystemis thedifficulty of acquiringtheinformationfor thismodel.

2.3.1. Concept Indexing

2.3.1.1. Concept hierarchies acquisition from documentation experts

It is possible to acquire concept hierarchies directly from documentation experts. They

generally reproduce a content analysis to extract relevant concept descriptors and their
relations. At this point, the methods 12 described in section 2.1 can be used to initiate the

knowledge acquisition process as well as to normalize expert knowledge. Descriptors can
be recursively grouped into classes. Thus, if each referent ri described by a set of concept

descriptor dj, dj can be given by users to retrieve ri or inferred from another concept dk
semantically related to dj. Concept hierarchies can be acquired manually or interactively
with an assistant system.

Interactive indexing techniques have been developed already. For instance, at the
National Library of Medicine, a frame representation of document concepts has been used
in the Indexing Aid System (Humphrey, 1987). The corresponding system includes
inheritance, restrictions, and various functions implemented as procedural attachments on
the concept frames.

2.3.1.2. Concept indexing by end-users

There are at least two good reasons to get indexing concepts from end-users. The first
reason is that concept hierarchies given by documentation experts can be useful but are not
necessarily personalized to users. In other words, users should be able to easily annotate
their documentation, and consequently modify provided indexing means. The second
reason is that it is only when people use the documentation that they realize what
information is useful (or not useful) in a given situation. In other words, indexing concepts
are difficult to anticipate, but they can be very easy to formulate when users face the
corresponding information. We must notice that concept indexing by end-users is a

12 Conventional approaches to indexing and information retrieval.

47

complementaryprocessto theconcepthierarchiesacquisitionfromdocumentationexperts.
Furthermore,bothprocessescanbecircularlyperformed.In chapter3, wewill developa
theorybasedon theassumptionthatdescriptor-referent,descriptor-descriptorandreferent-
referentsemanticrelationshipsarecontext-dependant.

2.3.2. Text Analysis and Interpretation

If we assume that the text to be processed is content-rich, i.e., there are explicitly in the text
words or phrases that can be taken as partial knowledge to build a knowledge base
representing the text. Parsaye et al. (1989) have proposed four types of data structures to
store and use resulting knowledge: lists, frames, relational databases, and hierarchies. Lists
constitute the most basic structures. Frames introduce the concept of slots in list elements.
When the same set of slots is used for all referents a relational table can be built. This

allows a variety of operators to be applied in accessing the information within referents.
The main task in the development of a text interpretation system is the translation of

documentation information into usable knowledge. During the first phase, one extracts all
the significant descriptors (included in the text) using a "stop list" that includes all the
words and expressions that do not characterize the domain. Obviously, this task is
incremental by nature, i.e., the stop list is updated incrementally. To discover new
expressions, a list of domain-dependant descriptors can be maintained also. In a second
phase, an expert can be used to structure the list of domain-dependant descriptors. A
hierarchy of descriptors and synonyms should come up from this process.

The particular combination of descriptors in a query establishes a context (cf. Gestalt
Psychology) that is more than the sum of the separate effects of each descriptors taken
alone (Parsaye et al., 1989). Construction of these context is not a trivial task. A method to
build a context is to capture local contexts and generalize them. For instance, take the four
following queries:

1. (ENGINEERS) (SPACE SCIENCES) (RESEARCH)
2. (ENGINEERS) (INFORMATION SCIENCES) (RESEARCH)
3. (ENGINEERS) (SPACE SCIENCES) (DEVELOPMENT)
4. (SECRETARIES) (SPACE SCIENCES)

Parsaye et al. propose a process of context formation for each query that consists of three
steps:

1. Find an appropriate descriptor class in the structured list of domain-dependant

descriptors, i.e.,

(ENGINEERS)
(SPACE SCIENCES)
(RESEARCH)

belongs to
belongs to
belongs to

(professional category)
(organization)
(type of work)

2. For each descriptor instance in the query establish a context that includes the classes
of the other descriptor instances in the query, i.e.,

((ENGINEERS)
((SPACE SCIENCES)
((RESEARCH)

(CONTEXT ((organization) (type of work))))
(CO_XT ((professional category) (type of work))))
(CONTEXT ((professional category) (organization))))

3. For each "contextualized" descriptor, rebuild corresponding instances of contexts,
i.e.,

48

((ENGINEERS)

((SPACESCIENCES)

((RESEARCH)

(((organization)((SPACESCIENCES)))
((typeof work) ((RESEARCH)))))
(((professionalcategory)((ENGINEERS)))
((typeof work) ((RESEARCH)))))
(((professionalcategory)((ENGINEERS)))
((organization)((SPACESCIENCES)))))

Associationsbetweendescriptorsandreferentscanberepresentedbyrulessuchasthe
following:

If theuseris anengineerdoingresearchin spacesciences
andasksfor informationoncomputerlanguages
thenproposereferentsrelatedto FORTRAN.

2.3.3. Conclusions

Current knowledge-based contributions to documentation indexing and information
retrieval are focusing on concept indexing, and text analysis and interpretation. Both
approaches are very young and not yet stabilized into formal theories. However, it seems
clear that they bring more flexibility in the implementation of appropriate models of
domains and tasks to be tackled. The former leads to concept clustering, a method that has

been already developed in machine learning, in particular in the COBWEB system (Fisher,
1987)• The latter leads to the application of natural language understanding paradigms.

2.4. Synthesis

The main technological objective of this project is to combine these three approaches
(conventional indexing, hypertext, and knowledge-based systems) to develop appropriate
semantic context-sensitive indexing and information retrieval.

Because of their associative capabilities, hypertext systems can be considered as mimics
of the brain's ability to store and retrieve information by referential links for quick and
intuitive access• Multipurpose research environments have been developed that encourage

cooperative thinking on shared projects. Recent results have shown that hypertext is
attractive for the development of large documentation systems (Glushko, 1989)• However,

although hypertext systems increase accessibility, they do not provide any built-in
selectivity mechanism, i.e., you may have several candidate referents for one descriptor.
Hypertext systems are also known to have problems:

• disorientation, i.e., the tendency to lose one's sense of location and direction in a
nonlinear document, e.g. if you are exploring a country where you have access to any
location but without map; and

2. cognitive overhead, i.e., the additional effort and concentration necessary to maintain
several tasks or wails at one time (Conklin, 1987).

In other words, while non-linear or hypertext systems may dramatically increase the
accessibility of information, this increased accessibility may magnify an already severe

problem of selection (Jones, 1987). A solution is to build appropriate indexing which will
facilitate the process of information selection.

Conventional indexing methods have been described in section 2.1. They are systematic
and can be automated. However, they are not very flexible and are very dependent on their

49

own underlyingnormativemodel.Theycanbeimprovedby introducingknowledgeinto
them.Wewill describein thenextchaptersanAI approachto indexing.It mustbenoticed
thatsomenormativemodelsof indexingcanbekeptandmixedinto theknowledge-based
approachwehavechosen.

Our basic idea is based on the observation that information retrieval leads to the

application of search procedures. For these reasons, knowledge-based systems technology
can be very helpful for alleviating the selection problem and cognitive overhead of users.
Another reason for developing a knowledge representation on top of (or imbedded in)
hypertext systems is an easy mapping between the two: i.e., our knowledge representation
can be naturally associated with hypertext nodes. This approach leads to the acquisition of
context-sensitive descriptor-referent links. It is different from techniques like TCS (Text
Categorization Shell) that analyze text at a conceptual level, without attempting a full
analysis of meaning (Hayes et al., 1990). The technique that we are currently developing is
based on the incremental modification (provided by users) of the descriptors semantically
linked to referents.

50

Chapter 3

Contextual Knowledge

People use descriptors to retrieve information. These descriptors can be either explicit,

e.g., table of contents or index, or implicit, e.g.,.a cognitive representation of the
documentation that provides relations between pieces of information and approximative
locations of them in the documentation. Users build cognitive maps to navigate in their
documentation. Such cognitive maps are context-dependent. They are not the same from
one user to another for the same documentation. They remember that this particular piece of

information was (or was not) very interesting in such or such context.

Generally, indexing is done by book designers and not by users. An index and a table of
content are generally presented. Unfortunately the descriptors printed are context-free.
Because a descriptor can describe many referents, the problem of decidability introduces a
major problem of backtracking that users may not accept especially when he is dealing with
real-time operations. For such reasons, we have observed that technical and operational
documentation is always fine-tuned by incrementally taking into account various situations

(or context) in the indexing mechanism.
The problem is then to "contextify" the links between documentation nodes, i.e.,

relations between descriptors and referents. This will reduce the number of possible
referents for a descriptor. This section presents a technique that solves this problem.

In this technical memorendum, the context acquisition problem is defined as discovery of

abnormal conditions and generation of recovery actions, as well as reinforcement of current
actions. Our implementation of a solution consists of two steps. It first observes users'
decisions to add abnormal conditions or to reinforce current actions. If an abnormal

condition has been isolated, the system either allows users to formulate a recovery action
(using a text editor-like interface), or, if possible, records the subsequent users' strategy
(i.e., the trace of his actions) for later analysis and formulation of a recovery action from
this trace. For our documentation application (described in chapter 4), it is possible to
record the trace of users' inputs (e.g., mouse clicks or keystrokes) in the electronic
documentation. In the second step, if necessary, indices are refined into a more useable

form according to context. This technique is developed in section 3.3.

3.1. Representing Contextual Knowledge

3.1.1. Introducing the Block Representation

The quality of the communication between two individuals most often depends on their
reciprocal understanding of the internal model of the other. For example, a discussion
between experts of the same domain will come down to an operative language (Falzon,

51

1986) which is highly "situational". In this case, the experts have quasi-identical
knowledge of the subject they are talking about, in other words, their internal models are
almost identical. In contrast, when a professor is addressing his students, each has a very
different internal model. The professor must "decompile" his situational knowledge to

make it intelligible to beginners. We will say that he uses an "analytical explanation" to
make himself understood.

This distinction between analytical and situational is not new. In their critique of artificial
intelligence, Hubert Dreyfus (1979) and Stuart Dreyfus (1982) underline the importance of
situational knowledge in expertise, and the difficulty in eliciting and representing such
knowledge so that it can be manipulated by a computer program. According to Hubert and
Stuart Dreyfus, current expert systems can only represent the knowledge of a competent
beginner, i.e, repeat the course given by the professor, or, in the best case, make a start at a

few simple exercises.
The ideas in this section have evolved from several projects concerned with human-

machine interaction and artificial intelligence. The first, the MESSAGE project, was a
system designed to evaluate aircraft cockpit configurations by simultaneously monitoring
pilot and aircraft behaviour and relating these to specific performance criteria. This
necessitated building a human operator model (Boy & Tessier, 1985). We used it to
analyze different types of errors and to demonstrate the utility of the decomposition of

knowledge into analytical and situational forms. A second project undertaken in
cooperation with NASA involved analyzing operator/system interactions in the task of fault
diagnosis on the orbital refuelling system of the space shuttle (Boy, 1986a, 1987b).
Finally, the block representation was initially developed in a third study focusing on
operator assistance in telemanipulation (Boy & Delail, 1988; Boy & Math6, 1988, 1989).

An index is represented as a block containing a description of a set of preconditions
(triggering preconditions and contextual conditions), a set of postconditions (goals and
abnormal conditions), and a set of actions to achieve the goals (Figure 3.1).

Triggering Preconditions

Set of
Actions

Contextual
Conditions

Goals

Abnormal
Conditions

Figure 3.1. Block representation

D,-

Generally 13, the selection of one (or several) action(s) in a set of actions is task-driven. The
application of an action is supposed to reach a given sub-set of atomic goals, and can be
attached to a particular set of abnormal conditions.

Triggering preconditions are conditions which lead to the activation of a set of actions.
The triggering preconditiofis PC(B) of a knowledge block B are represented as a
conjunction of predicates. The triggering preconditions of a block can be totally satisfied
(necessity), partially satisfied (possibility), or not satisfied.

13 The concept of block has been used by Nathalie Math6 in her thesis in the telerobotics domain. The use
of blocks in the documentation domain is slightly different (see Matht, 1990).

52

Goals G(B) of a block B are represented as a disjunctive set of predicates. Each goal is
associated with an action and represents the expected result of this action. Goals of a block

can be suggested, not suggested, reached, or not reached. A goal can be suggested by
another block, or internally, when the triggering preconditions of its block are satisfied.
Otherwise, it is not suggested at all.

An abnormal condition is represented as a disjunction of atomic predicates. Each
abnormal condition of a block can be satisfied or not satisfied. When a set of actions is no

longer applicable to the current situation, the situation is said to be "abnormal" for this
block and an abnormal condition corresponding to this situation must be attached to the
block. Abnormal conditions can be associated with the entire block or with a specific set of

actions. For instance, during the execution of an aircraft navigation procedure (i.e. a

particular piece of documentation), a cabin depressurization in flight is an abnormal
condition which leads to the application of a recovery procedure.

Contextual conditions are represented as a disjunctive set of predicates. Contextual
conditions in which a block holds, define a range for the state of the environment in which
the block can be activated and executed. For instance, contextual conditions can be a set of

conditions characterizing a failure of a particular device, the current goal of users, or a
mixture of several physical and intentional conditions.

For instance, if somebody is solving a problem in a given environment, there are a lot of
tacit preconditions which are "obvious" (e.g., constant) in this environment. These
preconditions are included in the contextual conditions. Given this definition, if a system is
in a context, reasoning can be done on the set of blocks belonging to that context. Thus,
triggering preconditions can be made much simpler, leading to faster pattern matching.
Contextual conditions are organized in hierarchies. This facilitates the organization of the
block knowledge base. For example, in aviation, a flight is generally organized into
phases, which are decomposed into sub-phases and finally each sub-phase is described in
the form of knowledge blocks that are documented in the form of procedures (Figure 3.2).
In the context of a flight, there are several sub-contexts (before take-off, take-off, etc.). In
each terminal context (e.g., take-off), a set of blocks has to be performed. If everything is
"normal", the pilot accelerates the plane up to a decision speed called V1 after which he will
not be able to stop the plane in case of a major incident. He executes the first block "Before
V 1." If no abnormal condition occurs, he executes the blocks "Before Rotation" and
"Before V2 +10". If an abnormal condition is satisfied during the execution of the block
"Before VI", then he can decide to execute the block "Stop the plane".

Flight

Before Take-Off Take-Off Climb Cruise Approach Landing

I Be,oreVl

[Before Rotation _--

I Bef°re v2 + 10 j

Stop the plane ?
I

Figure 3.2. Simple hierarchy of contexts.

53

3.1.2. Context in Information Retrieval

3.1.2.1. External vs. internal context

In information retrieval, context may be seen as external, i.e., context is characterized by a

set of attributes such as type of user, type of task leading to the information retrieval, etc.,
or internal, i.e., context is characterized by a set of attributes suc h as the locationin the
documentation where users are currently, the history of referents they have consulted so
far, etc. The current context can be a set of external contextual conditions augmented by a
set of internal contextual conditions. During any consultation of the documentation, the

context may change either because users changed it, or because the current context has been
changed from data coming from sensors, or because the location and history of the search
changed.

3.1.2.2. Current context and context patterns

The current context is the expression of the situation of the current information retrieval
(from both an internal and external standpoint). Context patterns express sets of contextual
conditions that define a set of blocks in the same context.

3.1.2.3. Mutually-independent vs. dependent referents within a block

Within a given block, several cases are possible: proposed referents are mutually
independent in the current context, or some (or all) of the referents can be grouped together
in the current context (i.e., they must be displayed together in the current consultation either
in sequence or in parallel).

If there is no information, referents within a block are considered mutually independent,
i.e., they are connected by an exclusive disjunction operator.

It may happen that a subset of referents within a block are connected between each other
i.e., they are connected by an conjunction operator. This conjunction operator can be

specialized as aprocedure:

- a sequence, i.e., these referents must be displayed one after another,
- a parallelism, i.e., these referents must be displayed all together at the same time.

Thus, a generic structure for referents in a knowledge block would be a disjunction of
procedures (specialized conjunctions of referents), i.e.,

I'I1

V Ari

j=l riEl_

where m is the number of procedures, ri is a referent, Rj is a subset of the set of referents

for the procedure j, v is the disjunction operator, and A is the procedure operator (sequence

or parallelism).

54

3.2. Using Contextual Knowledge

3.2.1. Block Management

When a context is recognized, the corresponding blocks are suggested. A block is executed
when its triggering preconditions are totally or partially satisfied. Problem-specific criteria
have to be introduced to define the term "partially satisfied". In the case of several partially
satisfied triggering preconditions, the best precondition is chosen. The execution of a block
consists of performing its actions and controlling the satisfaction of the corresponding
abnormal conditions. Abnormal conditions can be of two types: weak abnormal conditions
which, if they occur, will cause an exit from the current block towards another block in the
same context, and strong abnormal conditions which, if they occur, will cause an exit from
the current block towards another context of blocks.

For instance, a blown bulb in an aircraft cockpit may be a weak abnormal condition
which does not necessitate changing the context of the flight. Conversely, an engine shut-
down will cause a radical change of context, i.e., the pilot will adopt a different strategy
(fly to the closest airport for example) and apply the appropriate recovery procedure.

1

Before Vl I I Stop the plane I

6

._Before Rotation L

Context: Take-Off

Figure 3.3. Context of knowledge blocks.

55

An example of a context of blocks is given in Figure 3.3 and represented in the form of a
flow diagram. Let {"Before VI", "Before Rotation", "Before V2 + 10", "Stop the plane"}
be a set of blocks having the same contextual conditions. Arrows represent links and are
identified by numbers, from 1 to 7 in Figure 4. For example, link 5 links "Before VI" and
"Stop the plane" when a specific abnormal condition of block "Before VI" is satisfied.
Block "Before V 1" is called the "root" of the context of blocks. Notice that a context of

blocks is a block itself. In our example, triggering preconditions of the context block are
the triggering preconditions of block "Before VI", its abnormal conditions are those of

blocks "Stop the plane", and its goal is the goal of block "Before V2 + 10".
In the previous aviation example, each block has initially only one action that leads to the

execution of a procedure. Thus, in this particular case, blocks and procedures correspond
the same documentation entities. Blocks "Before V 1", "Before Rotation", and "Before V2

+ 10" stand for procedures "Before VI", "Before Rotation", and "Before V2+10". In
normal situations, blocks are organized and processed in a tree sequence, e.g., "Before
VI" -> "Before Rotation" -> "Before V2 + 10". We will call the resulting process linear
browsing of a set of blocks. Abnormal situations interrupt this linear sequence to branch
onto other blocks (generally called recovery procedures). In our aviation example, let us
assume that, when applying the procedure 'q3efore VI", the speed indicator shows an

unacceptable value (weak abnormal condition 5). The pilot has to use procedure "Stop the
plane" that monitors the thrust except if the speed is lower than a given threshold (strong
abnormal condition 7). In this case, the pilot has to change the context and actually stop the
plane. If the speed is within an appropriate range, then procedure "Stop the plane" succeeds
and the pilot can apply procedure "Before Rotation" (link 6). We will call the resulting

process non-linear browsing, e.g., A->D->B->C.

3.2.2. Using Context in Information Retrieval

Context is useful in information retrieval whenever there is more than one alternative

referent (action) proposed to users when they select a descriptor (triggering precondition).
As knowledge blocks are defined by context, each time a context pattern matches with the
current context and the triggering condition is satisfied (typically, users select a descriptor),
the corresponding knowledge block is activated and a set of referents is proposed to the
user.

Use of context when there is a large number of blocks to consult at a .given time is
crucial. However, pattern matching may become very time-consuming in this case. Indeed,
even if knowledge blocks increase the cognitive effect, i.e., the search is reduced, and
more "cognitively" appropriate context patterns are built as a result of experience, the
computational effect also increases, i.e., there are more context patterns to be scanned for a
given current context and thus the run time is globally increased. Tambe and Newell (1988)
have already shown this in the chunking mechanism of SOAR. Thus, replacing extensive
search in the documentation base by an extensive pattern matching in a block base does not

solve the problem of information retrieval, at least from a calculation time point of view.
For this reason, context compilation may reduce the pattern matching.

3.2.2.1. Context compilation

The goal of context compilation is to reduce complexity. Context compilation is useful
when there is a large number of context pattern candidates for a pattern match with the
current context. Let EC the set of all the elementary conditions:

EC = {Cl, C2 CN}

56

whereN is thenumberof elementaryconditions.
Let C bethecurrentcontext.C ischaracterizedby aconjunctionof contextualconditions:

C = (Coc(D A Coc(2) A ... A COc(nc))

where nc is the number of elementary conditions in C, and _c(.) is a function that maps the

integer set { 1, nc} onto the integer set {1,N}. Let B i a block defined by the set {rq, Rj},
- 1 kwhere _i is the context pattern in which Bi is valid, and Ri is the rest of the b oc

descriptlon (i.e., triggering conditions, referents, and abnbrmal conditions). Let nj a
conjunction of contextual conditions:

_j = (Caj(l) A Caj(2) A ... A C_j(nj))

where nj is the number of elementary conditions in rq, and 6j(.) is a function that maps the

integer set {1, nj} onto the integer set { 1,N}.

Complexity.
The complexity of pattern matching can be calculated as follows. If there are M block
candidates for pattern matching, each block Bj includes nj elementary conditions to be
tested against nc elementary conditions in the current context, the complexity can be

expressed as:

(nl + n2 + ... + riM) nc

The complexity expressed as above cannot be greater than M.N 2. This complexity can be
reduced by introducing heuristics in the pattern matching algorithm like stop testing
elementary conditions whenever a context pattern fully matches the current context.
However, in the current problem of information retrieval, we can reasonably expect that M
will be much bigger than N and that the context patterns are highly connected, i.e., they
generally share several elementary conditions. The main idea is to extract all the elementary
conditions from all the context patterns and establish links between them and the
corresponding context patterns. Let NEC the set of necessary elementary conditions to be
tested to assure the pattern matching of the current block base:

NEC = {ccr_c(1), cat, c(2), --- , Ca_c(n_c)}

where nNEC is the number of elementary conditions that are necessary to be tested to pattern

match all the context patterns in the current block base, and _NEC(.) is a function that maps

the integer set { 1, nNEC} onto the integer set { 1,N}.
The context compilation we are proposing is based on a recursive construction of

common subsets of context patterns, e.g., given rq a context pattern having three
elementary conditions:

_j = (C(_j(1) A Co)(2) A C(_j(3))

To be fully matched this pattern must have the following three elementary conditions
matched also:

(Caj(1)) (Coi(2)) (Caj(3))

57

Thus,thefollowing compilationgraphcanbebuilt (Figure3.4):

/gj = (C_j(1) A Coj(2) A CCj(3))]

Figure 3.4. Compiled context structure for accessing the block base.

Using the resulting structure, the complexity is considerably reduced. The pattern matcher
has to test only nNZC elementary conditions.

3.2.2.2. Compiled context use

Given the current context C, a set of elementary contextual conditions NEC and a

corresponding compiled context structure. The following algorithm can be applied (Figure
3.5):

•

*

o

Match C against NEC. The result of the pattern matching between C and NEC is the
set:

MatchC = {co_,_c(]), co_c(2) co_,_c(n,,t.,,c) }

where nMatchC is the number of elementary conditions that are matched in the context

C, and (_MatchC(-) is a function that maps the integer set { 1, nMatcnc} onto the integer

set { 1,nrq_}. Note that if complete pattern matching is required, nMatclaC = nc.

For the fh'st elementary condition in MatchC, prune all the context patterns in the
current compiled context structure that are not connected to it, consider the resulting
structure as the current structure, and delete the first elementary condition in MatchC.

If MatchC is empty then the current structure is returned as the matched pattern(s),
else return to step 2.

Figure 3.5. Compiled context use

3.2.2.3. Using abnormal conditions

As in the example described in section 3.2.1, abnormal conditions introduce non-linearities
in information retrieval. In other words, referents are presented to users with the provision

of information that they may not be satisfactory according to some attached abnormal
conditions. This feature allows default reasoning.

58

3.3. Context-Sensitive Indexing

3.3.1. Building Suboptimal Block Bases by Semi-Automatic Indexing

Automatic indexing techniques have been described in sections 2.1.2, 2.1.3, and 2.1.4.
We consider full-text indexing in this section.

3.3.1.1. Extracting words and their frequency

The first step extracts descriptors from text. We use a technique developed by Mark
Zimmermann that allows full-text extraction of words associated with their frequency in the

text. Zimmermann's software also allows browsing in internal context (i.e., in the context
of the referent, see section 3.1.2.1) from these words in the original text. This capability

can be used to build a first suboptimal descriptor base. The main output of this technique is
a set of words with the number of their occurrence in the processed text, i.e.,

{(dl,n(dllD)), (d2,n(d2lD)) (dp,n(dplD)) }

where p is the number of words extracted from the original text, n(djlD) is the number of

occurrences of dj in the documentation D (see section 2.1.2.1).

3.3.1.2. Extracting single-term descriptors

From the set of words {dl, d2, ..., dp} extracted by the techniques used in section 3.3.2.1,
the goal is now to keep useful single-term descriptors that are included in this set. To do
so, a stop list is used. It is also called the non-domain descriptor list. It includes all the
single-term descriptors that are common function words. A previously acquired domain-
descriptor list can be used to detect the new single-term descriptors. The intemal-context-
sensistive browsing capability provided by Zimmermann allows manual selection on this

list of potential new single-term descriptors. The resulting set is:

{(doD(1),n(doDo)lD)), (doo(2),n(doD(2)lD)) (cloo(q),n(doD(q)lD)) }

where q<p is the number of single-term descriptors, and t_D(.) is a function that maps the

integer set { 1, q} onto the integer set { 1,p}.

3.3.1.3. Constructing compound descriptors

To our knowledge, there is no formal method readily available to construct compound
descriptors from single-term descriptors. In this approach, we count on the motivation of

the people involved in the indexing process to construct them from the resulting set of
single-term descriptors provided by the technique described in section 3.3.2.2. This
motivation can be improved if the analyst is provided with a good intemal-context-
sensistive browsing capability such as the one provided by Zimmermann. In other words,
good editing capabilities have been observed to improve such a task.

Each time the analyst selects a single-term descriptor and its context, a list of lines is
displayed. Each of these lines includes the corresponding single-term descriptor (in the
middle) with a few words around it. If such viewpoint is not sufficient, the selection of the

corresponding line causes the display of the original text in which this line is included. The

59

analystmaylike to selectseveralwordsaroundthesingle-termdescriptorin this textand
composeacompounddescriptor.

3.3.1.4. Constructing aliases

As for compound descriptors, there is no formal method really available to construct
aliases. Thus, good editing capabilities help users connect descriptors between each other.
In CID, an alias mode is available that allows selection of several descriptors and connects
them as aliases.

3.3.1.5. Building descriptor-referent links

Once a first list of descriptors is available, a full-text search can be performed and

descriptors can be assigned to referents in which they are included. In our hypertext
system, referents are labelled by the name of their support card. Full-text search is then
performed sequentially in each card of the hypertext, and the block base is maintained
incrementally along this search.

3.3.2. Intentional vs. Experimental Search

3.3.2.1. Definitions

At this point, we must introduce the two modes of activity performed in documentation use:

experimental search: a casual approach, often seen in activities such as browsing and =
exploratory learning, which may imply a more active role for the computer in
suggesting interesting information to be examined; note that experimental search will be
also called experimental browsing;
intentional search: a deliberate search for information to fill a particular need, for

instance, to prepare a report or answer a specific diagnostic.

Exl_rimental search is tlsually used to build initial relations between descriptors and
referents that have not been built automatically using the the technique described in 3.3.1.
This can be done automatically assuming that descriptors are explicitly included in
referents. In this case, our system scans the hypertext database and extracts each descriptor
attached with a list of referents that corresponds to all the locations where this descriptor

has been found. The corresponding blocks of knowledge that are generated this way are
context-free. This automatic approach is generally not sufficient because some referents can
be implicitly described by a descriptor, i.e., the descriptor is not explicitly written in the
referent text. In this case, human intervention is necessary. We have implemented a
mechanism that heuristically recognizes the experimental search mode when using the
documentation. Thus, when a user acknowledges that a displayed referent is interesting
(click on "Success"), the system asks for a description of this referent and subsequently
generates a new block of knowledge in the context of the search.

Intentional search Jr used to refine existing blocks of knowledge, i.e.. to add more
context in them.

60

3.3.2.2. Detecting the user search mode

The user search mode can be set directly by users or inferred by the system using
heuristics. Users can put the system in the experimental search mode (or the intentional
search mode) by switching the search mode button on the control panel (see section
4.2.3.1). There are other ways to automatically turn the system into the experimental search
mode. To do so, a few heuristics have to be defined such as:

- the user flips the pages,
- the user browses through the hierarchy of documents (nonlinear table of contents),

the user browses the documentation in a full-text search mode, looking for a given

descriptor in the text.

Note.

If users put the system in the experimental search mode by switching the search mode
button, then the experimental mode persists, i.e., the system will not be able to switch
automatically to the other mode. This remark introduces actually three effective search
modes: free experimental, persistent experimental, and intentional.

We currently have only one heuristic defining the intentional search mode which is:

the user selects a descriptor and consequently a referent (in the list attached to the
descriptor) and did not put the system in the experimental search mode himself. This
means that the selected referent is a goal which must be tested.

3.3.3. Success and Failure Feedback

Participation of the user to the indexing process has to be minimal and as non-invasive as
possible. We have decided to provide the user with a success/failure set of buttons (each
referent is equipped with this capability). Selection of the success (failure) button means
that the user is (not) happy with the information provided in the current referent. Depending
on the search mode, the system will behave differently (see section 3.3.4 and 3.3.5).

3.3.4. User-Guided Indexing in Experimental Search Mode

We distinguish user-guided indexing in experimental search mode (ES-mode) from semi-

automatic indexing along the following dimensions:

documentation use

type of indexing

Semi-automatic indexing

off-line

systematic

User-guided indexing
in ES-mode

on-line
casual

The first problem is for the system to recognize the user search mode. When the system
knows that the user is in an experimental search mode, it must provide appropriate user-
guided indexing capabilities.

61

3.3.4.1. Recording a trace

After the system detects the experimental search mode, it automatically starts to record
descriptors and referents selected by users until they select the success button. The
corresponding trace can be represented as follows:

(r0, do) A (rl, dl) A ... A (rn, dn)

where for all i descriptor di is included in referent ri, A is the sequence operator. When the
user selects di-1 in ri_l, in the most general case, the system provides a set of possible
referents attached to di-1, and then the user selects ri among them. By definition, a trace is
kept whenever the user selects the "success" button in the referent. In the above
representation dn (i.e., the last descriptor selected by the user) plays a special role, and will
always describe the "success". In other words, when the user selects the button "Success",
the virtual descriptor dn is generated. The trace can be represented graphically as follows
(see the representation of referents, section 4.2.1.2):

All stored traces are subsequently analyzed off-line (see section 5.3.3.1).

3.3.4.2. Describing a successful referent

Assuming that the system is in the ES-mode, when the user selects the success button, the
system displays two lists of descriptors. The first list includes the suggested descriptors,
i.e., the descriptors extracted from the trace. The second list includes all the possible
descriptors. The user has to select one (or several) of them that describes the best the
successful referent. If the corresponding block does not exist in the block base, then the
system builds a knowledge block that includes the selected descriptor, the successful
referent, and the current external context (although the user may modify the context if

necessary).

3.3.5. User-Guided Indexing in Intentional Search Mode

iARC is the prototype system that implements the technique of Index Acquisition and
Refinement according to Context that will be described in this section. The current version
of the IARC system is implemented on a Macintosh H Cx in Allegro Common LISP,
HyperTaik and C.

3.3.5.1. Discovering Abnormal Conditions

Following the same example as in section 1.3.4 of this technical memorendum, with the
descriptor dl (triggering precondition) "air conditioning" and the contextual conditions
(C1, C2, C3) "you are a designer, you are concerned by the connection of the air
conditioning system, and you have very little information about the electrical circuitry in the
cabin", four different referents are possible in the documentation (rl, r2, r3, r4) "a list of the
vendors of air conditioning systems", "a description of the air conditioning system", "a

checklist of what to do when the air conditioning fails", "a diagram of the electrical circuitry
in the main cabin of the Space Station'. The first one is not satisfactory, it is a failure. The

62

secondandthethirdarealsofailures.Fortunately, the fourth one will give the information
that is needed, it is a success. If this result happens frequently, r4 will be generated
automatically from d: and (C:, C2, C3). Unfortunately, using this block of knowledge, a
particular situation is observed in which r4 is a failure. It would be unintelligent to repeat
this experience again and again, which is why an abnormal condition will be added to the
given block. In other words, what caused the goal not to be achieved? The resulting
explanation will have to be added in the form of an abnormal condition.

(CONTEXT
(TRIGG. COND.
(ACTIONS

(C1 C2 C3))
(dl)
(rl +5 ((AC1 1) (AC2 3)))
(r2 +3 0)
(r3 +2 ((AC2 1) (AC3 1)))
(r4 +2 0)))

Figure 3.6. Example of block.

Inputs to the program include user judgements on the success of actual retrievals. After a
referent has been found, the user can select three buttons: "success", "failure", "don't

care". The system automatically records this selection by adding +1, -1, or 0 to a
reinforcement slot attached to the original block referent inferred by the descriptor used. An
example of a block is presented in Figure 3.6. Descriptor dl is valid if the context
conditions (C1, C2, C3) are satisfied. The first referent rl has a reinforcement slot of +5; it
has two abnormal conditions AC1 with 1 occurrence and AC2 with 3 occurrences.

The program's output is the set of blocks which are used as follows. When the user
selects a descriptor, at any point in the documentation where this descriptor is, a menu of
actions pops up with an ordered set of possible referents found successfully in the same
context in past retrievals. The order of referents is based on the reinforcement slot. Such
menus can be very different among users and in various contexts.

INPUTS: B, status (given by the user), and inputs from the user in case of failure
OUTPUTS: B, and a new block called newB in case of failure
MEHHOD:

IF status is success
THEN

reinforce(currentAction of B, +1)

IF currentContext u Context of B - currentContext n Context of B _ O

THEN union(currentContext, Context of B)
ELSE

IF status is failure
THEN

reinforce(currentAction of B, - 1)
elicitAbnormCond0
put processAbnormCond0 into currentAC of B
incrementOccurrence(currentAC of B, +1)

Figure 3.7. Portion of the algorithm for the abnormal conditions acquisition

The following is a learning technique that augments system knowledge (Figure 3.7). The
mechanism involves rote learning for incrementally capturing information about retrieval
and adding it to the block contexts. The user gives information on the achievability of the
goal of the action currently in use: success or failure. We will then say that the goal is

63

reached.This isdonein a "given"currentcontextc. If thecurrentcontextc is includedin
theinitial contextualconditionsCsof theblockB, thena successmayleadto a
reinforcementof Cs.This is alwaysthecaseif theuserdoesnotenteranydescriptionof
thecurrentcontext.However,if theuserdescribesc, thefollowingruleshaveto be
considered.If thecurrentcontextc andCshavenon-emptyintersection,thensuccessmay
leadto eitherareinforcementor anextensionof Cs.If thecurrentcontextc is notincluded
in Cs,thenasuccessleadsto anextensionof Cs.

If theapplicationof theactionis a"failure",thenanabnormalconditionhasto beinserted
into theoriginalset of abnormalconditionsof theblock.This abnormalconditionisgiven
by theuserafterthefailurehasbeenidentified.Abnormalconditionscanbeseenas
exceptionsto the"normal"useof theblock.In thiscase,theuserreturnstoa manual
operationandtriesto provideasolutiontorecoverfrom thefailure.Thetraceof sucha
recoveryis recordedandusedfor implementingarecoveryblock.A newblockof
knowledgeis createdandimplicitly attachedto theoriginalonethroughanabnormal
condition.

3.3.5.2. Refining Index-Blocks by Context

Using the above learning procedure, huge block bases can be generated. They have to be
compiled to maintain reasonable memory size and performance. Contextual conditions are
used to suggest a given context of blocks. At the beginning of the knowledge acquisition
process, contextual conditions are very small, i.e., they include a few very simple
conditions. As the process continues, parts of some blocks can be transferred into
contextual conditions (also called situation patterns) (Boy, 1987). More generally, parts of
some blocks can be transferred into other blocks upstream in the hierarchy. For instance, if
a recovery block solving an abnormal condition is used often, then it cannot be qualified as
a recovery block anymore and should be integrated (compiled) into the set of actions
(referents) of the block(s) including this abnormal condition.

INPUTS: B, thresholdAC

OUTPUT: B, and eventually a set of newB
METHOD:

For all actions A in B do

IF exist ACi associated to A such that occurrence(ACi) > thresholdAC
THEN

Delete A and its associated abnormal conditions in B

Create newB having - the same context as B augmented by (not ACi)

- the same descriptor as B
- the action A with a reinforcement slot of +1

Figure 3.8. Portion of the refinement procedure

The block refinement mechanism has been implemented as presented in Figure 3.8.
Assume we are applying a block B described by a set of contextual conditions, a descriptor
(or its aliases), a set of actions and their associated abnormal conditions. In the CID
application, this block takes the form presented in Figure 3.6. The ref'mement procedure
says that if the occurrence of an abnormal condition ACi attached to an action A of a block

B is greater than a given threshold then the corresponding action must be deleted in the
block B and a new block must be created. This new block includes the contextual

conditions of B augmented by the negation of ACi such that when its descriptor (the same

as B) is selected, it leads to the action A without abnormal condition attached. Of course,

this new block could be augmented in future experimental or intentional search.

64

3.35.3. Example of Application

It takes years of training to become a flight controller in the Space Shuttle Mission Control
Center. As one part of this training, people learn to use a large corpus of documentation to
solve problems. They develop a deep knowledge of the organization of these manuals in
order to access the proper sections as quickly as possible. Currently the operational
documentation used by flight controllers is paper-based. For the short term, the goal of
CID is to help people more efficiently access documentation on a computer. One thing CID
attempts to do is to help narrow the search through documents while allowing the full
browsing freedom to which people are accustomed. According to each user's situation,
IARC will provide user-tailored assistance. CID will use IARC to incrementally learn new
strategies of searching through documentation from observing people's use of
documentation to solve problems.

One goal is to make CID look as close as possible to the documentation environment to
which users are accustomed, the current organization of manuals in CID is unchanged and
the pages are physically displayed the same way as in the manuals. As with regular books,
users are allowed to write annotations attached to particular words or phrases they select.
They can go through the manual sequentially or by using special facilities that hypertext
systems allow. Generally, descriptors are used to go directly to a location in the manual
where that descriptor is located. Users may also go directly to a particular section or page
if they know where they want to go. They need not leaf through pages to find a certain
section. This alone makes the process of searching through documentation easier.

When the user uses this tool and clicks on a descriptor, a menu pops up providing a list
of possible locations for the desired information. The user may select a menu item and CID
will provide the corresponding section to him. If the user is satisfied with this information,
he may click on "success". This will reinforce the persistence of the selected item. If he is
not satisfied, he may click on "failure". This will decrease the persistence of the selected
item. Of course, each time the user cooperates (i.e. tells the computer to reinforce or
penalize the persistence of an item), the corresponding context is taken into account by
IARC which updates the corresponding block in CID. This way, IARC provides an

intelligent assistant capability to CID. By acquiring more blocks and especially more
context, CID should assist flight controllers in their search through documentation in an
intelligent fashion.

In the example shown in Figure 3.9, the context was already known from CID and
described by a set of strings such as Name of the user (John Smith) and
Type_of_task_leading to the retrieval (Diagnosing). The user has clicked on the
descriptor "OPS RECORDER", then CID provided the following menu (that is not
displayed on Figure 5):

11.2. S-BAND_UHF LAUNCH REQUIREMENTS

11.46. LOSS OF RECORDERS

The user selected the item "11.2. S-BAND_UHF LAUNCH REQUIREMENTS". CID

displayed the corresponding referent. The user did not like the corresponding information
and clicked on "failure". Then CID provided the following menu:

11.46. LOSS OF RECORDERS

EXPLAIN WHY...

I AM LOST !!!

65

becausetheusermayhavewronglyselectedtheitem "11.2.S-BAND_UHFLAUNCH
REQUIREMENTS"(thesystemgivesanotherchanceto theuser).If theuserselects
anotherlocation,thesameprocesswill takeplace.If theusercanexplainwhy theprovided
referentis notsatisfactory,thenheselectsthe"EXPLAIN WHY..." option.A list of
explanationsisprovidedto him bythesystem.Theseexplanationsarebrief statements
expressingabnormalconditionsencounteredin thepast.Hemayselectoneof themor
generateanewone.Theselectionis automaticallyprocessedandkeptin thecorresponding
knowledgeblockasanabnormalcondition.If theuserselects"I AM LOST !!!", CID
providestheopportunityto returnto eitherthetableof contentsor thetableof indices,or to
changethedescriptionof thecurrentcontext.

3.3.6. Conclusions

Context-sensitiveindexing augments hypertext capabilities by encapsulating expertise that
may be used to aid in the diagnosis, maintenance and repair of complex systems, choice of

design alternatives, system configuration, intelligent tutoring, etc. It should translate users
concerns into appropriate actions and help them solve problems. It allows adaptation of the
system to users skill and knowledge.

66

m

i

O
I--

mm

ta_

m
wm
LL

"II

v

Figure 3.9. Example of screen of the current CID system.

67

Chapter 4

Implementation of a Computer
Integrated Documentation System

The application to implement the first prototype of the Computer Integrated Documentation
(CID) System is based on an analysis of Space Station Information Systems and our
background on the problem of intelligent assistance (Intelligent Assistant Systems book by

Boy, 1991). In this chapter, we report results of this analysis, and present the current
prototype of CID.

4.1. Space Station Program Requirement Document Application

4.1.1. Introduction

Historically, NASA centers have developed their own information resources based upon
the needs of each institution and limited to that individual site (Dede, Sullivan & Scace,

1988). Dede et al. claim that NASA documentation is characterized by its lack of

integration.
There have been several initiatives reported by (Dede, Sullivan & Scace, 1988). The

Technical Information Management System (TMIS) and the Software Support Environment
(SSE) are critical information systems needed for the support of the Space Station program.

In a project such as the Space Station program, integrated documentation is crucial to
connect all possible aspects of research, development, and operations. Everyone knows
that documentation is generated painfully (even if a lot is generated!) and is rarely used in
an efficient manner (when it is actually used).

The main problem in large documentation sets appears to be due to the lack of support for
revision (documentation maintenance), and for contextual information retrieval
(documentation management). This leads to inconsistent, incomplete, and redundant
documentation systems. For instance, section labelling is generally inconsistent among
documents 14. Some documents have sections labelled: 1, 1.1, 1.1.1, etc. Other documents

have: 1, 1.A, 1.A.1, etc.; or even: 1, A, 1, etc. Such inconsistencies generally cause

problems in information retrieval.

14 A first answer to this problem would be to design a standard format that NASA writers would use.
Taking into account that users have their own methods and styles, another solution would be leave
generation of documents as is, and make a survey of the various ways people label sections of their
documents. From this survey, it would be possble to build transformation rules from one style to another.
Obviously, this approach assumes the fact that each writer structures his/her documents hierarchically.

..._IN fENI]ONALLY BLANI_

69 PRECEDING PAGE BLANK NOT FILMED

4.1.2. Analysis of the Program Definition and Requirement Document

We have analyzed the Program Requirements Document (PRD) and the Program Definition

and Requirement Document (PDRD). These documents have the same structure and
include:

- a first page or cover,
a revisions page that includes titles of the baseline issue and its reference number,
revisions numbered by capital letters and their directive references number and their

publication date (see section 2.2.2.1),
a set of pages giving the paragraphs affected by the directive(s), i.e., a list of section
numbers,

- a preface,
- a table of contents,

a body of text (sections are numbered as 1.0,1.1,1.2, etc.), sections that have been
changed are generally marked with a @ sign in the margin,
abbreviations and acronyms,

- glossary or definitions,
- figures,
- tables.

It has to be mentioned that such documentation is changed very frequently dttring its

lifetime. Thus, advanced capabilities of information retrieval and edition would improve its

management and maintenance.
The PDRD is a detailed version of the Program Requirements Document (PRD). Both

documents have to be maintained at the same time when revisions occur. That means that

explicit connections would help in propagating the modifications in both documents.
Furthermore, within a document an explicit connection structure would help retrieve
information in context, e.g., one may need to know why and when such a piece of
information has been generated in the PDRD. An explicit structure maintaining the history

of changes would give this kind of information directly. At this stage, we are in the process
of identifying deeper needs in this documentation management and maintenance.

4.1.3. The Technical and Management Information System

The Technical and Management Information System (TMIS) has been developed by Boeing

for NASA (Figure 4.1).
The Program Automated Library System (PALS) provides an electronic documentation

management capability that enables users to store, manage, track, and retrieve
documentation, as well as full-text search capability for locating Space Station Freedom

Program documentation. It includes: baselined documentation with text and graphics; in-
process or working documentation with all generations; engineering graphics, drawings,
and text; minutes; directives; change requests.

Such systems allow full-text search using equations of keywords. It also allows
uploading and downloading of desired documents.

Problems with TMIS appear to be with its information retrieval mechanism based on
basic keyword technology, i.e., it is not possible to include context-sensitive search in the
documentation. Furthermore, the user interface would be very much improved by

providing a hypertext-like capability using graphical maps and semantic indexing.

70

I
TIffS WORI_TATIDN

Program Au_onm_d LibrmD' Sys_rn (PALS)

_$CN or I.AH

_oe._stut_z Wovkstat_oz (A)o].lo)

(Z_cgra_¢_ _,x_ aa_ grap_.J_s)

_W'4" for t_xt o_ly

._bLiz_t rat£'_ _rovk#tatLo_

(IBH-AT ,,:,_a Co,,,)a_i_l_)

I)'_4. for t_t o_I F

"W'i._ows Z_AW! Joy gva)A_

Figure 4.1. TMIS Document Management System.

4.2. The Computer Integrated Documentation System

The main idea in the infrastructure of CID is to split the knowledge useful for managing
and maintaining documentation from the content of the documentation itself (i.e., text and
graphics). Indeed, CID is composed of two main modules: the hypertext database
management system and the knowledge-based management and maintenance system.

4.2.1. HyperText Database

The hypertext database includes a hierarchical structure of nodes (referents), and an
interface management system that allows basic hypertextAike browsing in the
documentation and interaction with the knowledge based management and maintenance

system.

4.2.1.1. General infrastructure of referents

Documentation in CID is organized hierarchically (see section 2.2.2.1), i.e., there is a root
document (in the Space Station documentation example, it is PRD). The other documents
are hierarchically organized under the root, and documents themselves are structured
hierarchically as explained in section 2.2.2.2. An example of hierarchy for a document is
presented in Figure 4.2. A document is represented by a stack in HyperCard. Several
documents can be open on the desktop at the same time (in the HyperCard 2.0 version). A
consistent set of documents is generally called a collection. The basic entity is a card that

includes three basic fields: hierarchy to access this card, text or graphics, and a table of
contents for this card (see section B.2 in Appendix B).

Brown (1989) supports the fact that hierarchically organized hypertexts with a minimum
of "goto-like" cross-references improves navigation. Taking this argument into account, we

71

havekeptthehierarchicalstructureof the original text as a support for developing the
hypertext infrastructure. Such a hierarchy constitutes permanent links between referents. In
the hypertext, the cards containing the nodes are sequentially ordered depth-f'trst. Links
between cards can be built-in (e.g., go-to-next-card, go-to-index, etc.), or content-

dependent (i.e., guided by a knowledge block). This distinction between links will be
explained in the next section.

Document-X

Preface 1. Introduction 2. Infrastructure

1.1. Purpose

1.1.1. General Overview I 1.1.2. Details 1.1.3. Examples

I

I\

X
\

l 1.1.2.1. Structural Description I [1.1.2.2. Functional Descdption
I _1

where • are nodes including sub-tables of contents as well as text

are nodes including text only (terminal nodes)

hierarchical link

non-hierarchical link

Figure 4.2. Example of CID hierarchy for a document.

4.2.1.2. Referents

Generic referent structure
A referent in the hypertext database is usually a card in a stack. It is characterized by:

- input-link descriptors,
- output-link descriptors, and
- internal behavioral variables.

72

Input-linkdescriptorsarecharacterizedby asetof descriptors{dh thatdescribethereferent
andallowaccessto it. Thedescriptorthatcharacterizesareferentwithoutambiguityis the
sectiontitle (cardname)andthedocumenttitle (stackname),wecall it {d}N.Theother
inputdescriptorsarewordsorphrasesthatcaneitherbeincludedin thetextof thereferent
itself,wecall them{d}T,ordescribethereferentsemanticallywithoutbeingexplicitely
presentin thetextof thereferent,wecall them{d}s. Thereferentcanalsobedisplayed
from built-in descriptorsof otherreferents,suchasnext-cardorprevious-card,wecall
them{d}Bn.Wehavetheglobalrelation:

{d}I= {d}N+ {d}T+ {d}s + {d}BIl

Output-link descriptors are also characterized by a set of descriptors {d }o that are
included in the referent and describe other referents. We have the same global relation:

{d}o= {d}n+ {d}c+ {d}HIS + {d}T+ {d}s + {d}BIO

where {d}H is a set of descriptors that allow automatic moves to a referent upstream in the
hierarchy, {d}c is a Set of descriptors that allow automatic moves to a referent downstream
in the hierarchy (next level only), {d} HIS is a set of descriptors that allow automatic moves
to a referent that has been already explored by the user (history), and {d}BIO is the set of
built-in descriptors that allow exits from the referent and moves to another prespecified
descriptor, e.g., back, next-card, index, general table of contents. A set of referents is
attached to each descriptor included in the sets {d}T and {d}s that is presented to users
when they select the descriptor. We have already seen that a descriptor and its attached
referents constitutes a block of knowledge (without context for the time being).

Internal variables are characterized by a set of controls (buttons) and displays (fields of

graphic bitmap) that allows management and maintenance of the referent, e.g., edit-text
button. We say that these variables give a behavior to the referent. Figure 4.3 presents a
systemic representation of a referent. Note that a referent can be activated from several
descriptors, and several other referents can be activated from the set of output descriptors.

_ {d} I

Referent Identifier

Internal Behavioral Variables
{d}D

Figure 4.3. Systemic representation of a referent.

Single output assumption.
If we consider only one output possible at a time, browsing in the hypertext can be

represented as a sequence of states described by descriptors and labeled by referents
(Figure 4.4).

73

r 1 r 2 r 3

Figure 4.4. Sequence of referents as states of descriptors

4.2.1.3. Descriptors

Each referent includes a set of built-in descriptors and a set of programmable descriptors

that are content-dependent.

Built-in descriptors.
Built-in descriptors (BID) are a set of predefined descriptors included in each referent of the
documentation. They are currently the following:

- Next page (provides the next referent in the hierarchy in a depth-f'trst search manner),
- Previous page (provides the previous referent in the hierarchy in a depth-first search

manner),
- Back (provides the previously displayed referent),
- History (provides the list of the previous 20 referents displayed),
- Contents (provides the table of contents referent),
- Index (provides the index referent, i.e., alphabetical list of descriptors),
- Abbr. & Acr. (provides the abbreviations and acronyms referent),
- Definitions (provides the definitions referent),
- References (provides the references referent),
- Text (provides full-text search to find the referent including the f'u-st occurrence of a

given descriptor).

Content-dependent descriptors.
These descriptors can be built using methods described in sections 3.3.1 and 3.3.4. They

generally appear in the text {d}T. Descriptors can be built by users from their observation
of the referent contents {d}s. These descriptors are not necessarily explicit in the text but

can be pieces of graphics. The construction of graphical descriptors is described in section
4.2.3.3. Graphical descriptors are always in {d}s.

4.2.2. Knowledge-Based Management and Maintenance System

4.2.2.1. Descriptor agenda

A descriptor agenda is maintained and available at any time, and is called the index. A
single-term descriptor agenda is also available. Each single-term descriptor is included in
one or several (compound) descriptors. Access to a compound descriptor (triggering
condition of a block) from a single-term descriptor is described in section 4.2.2.2.

74

4.2 52.2. Access to a compound descriptor (triggering condition of a block) from a single-
term descriptor

There are several ways to select a compound descriptor present in the text of a referent. One
common way transforms the compound descriptor into a single string by replacing the
spaces between the words (single-term descriptors) by another character. Usually people
use underscores, e.g., "Automation and robotics" becomes "Automation_and_robotics".
This special character may be invisible to the user using a special font. The advantage of

this method is that when the user clicks on any of the words of the compound descriptor,
the compound descriptor is immediately selected. The main disadvantage is that each time a
new descriptor is added or modified, such a compilation has to be done in all the
documents that include this compound descriptor. Furthermore, this method does not allow
partial pattern matching, such as matching "Automation" with "Automation and robotics".

Our approach to this problem is the following. When the user selects a word w in the text
of a referent, this word is recorded by the system. Each referent is equiped with its own set
of descriptors {dh- (compound in general). The system tries to match w with each
descriptor of {d}T. If any exist, the system builds the list of descriptors including w, we
call it L({d}T). At this point, there are at least two possibilities: the close-world assumption
possibility, and the open-worM assumption possibility. They are implemented
independently, and are provided exclusively from each in the system, i.e., if one is
available, then the other is not.

The close-world assumption possibility assumes that when users select a word in the
text, they know what they are doing, i.e., users recognize a compound descriptor. In this
case, the system also records the words surrounding w (internal context), e.g., previous
and next words, wn and w,,., and tries to match each descriptor in L({d}T) with a window

of the text to include the selected word w. For instance, this window could be (w r, w), (w
Wn) or (wpw wn). If there is still an ambiguity, i.e. the number of resulting matched
descriptors is greater than one, then more words surrounding w have to be taken into
account, and so on.

The open-world assumption possibility does not commit on the fact that the user
necessarily knows all the compound descriptors. It assumes however that the user and CID
will cooperate to find the best compromise in the list of available descriptors (in the current
referent). When users click on a word, it is generally because they recognize in this word a
semantic description of what they are looking for. Thus, interactively the system proposes
the entire list L({d]T) to them. Then, they may select one of them. This method does
burden users, and gives to them the possibility to select descriptors that may not be
explicitly in the text they are using. For example, if the user clicks on the word "robotics",
the systein proposes a list of descriptors including "robotics" and "Automation and
robotics" that the user may prefer. This method augments the number of clicks (two instead
of one!). However, it is simpler, and provides more flexibility and potential to the user.

4.2.2.3. Representation of referents

Each referent (physically described in section 4.2.1.2) includes its own knowledge base. In
this sense, a referent can be considered as an agent which has its own knowledge to advise
the user in the next move from it. The knowledge base is composed of knowledge blocks.
Blocks have been already described in section 3.3.5.1. An example of block is:

(CONTEXT" (Cl C2 C3))
(TRIGG. COND. (dl)
(ACTIONS (rl +5 ((AC1 1) (AC2 3)))

(r2 +3 0)
(r3 +2 ((AC2 1) (AC3 1)))
(rn +2 0)))

75

Userfeedbackfor knowledgeacquisitionis handledthroughtwo successandfailure
buttons.Themechanismusedfor contextacquisitionisdescribedin figures4.5,4.6and
4.7 whichmustbeunderstoodin sequence.

Figure4.5showsthatcontextis atthetopof thehierarchyin theknowledgeprocessing
of ablock.After the login, thesystemautomaticallyprovidesadefaultlist of contextual
conditions,e.g.,thecorrespondingdefaultuserprofile.Theusermayaddor removesome
contextualconditions.If thesystemis pluggedinto theenvironment(in thecaseof theCID
in thespaceshuttlefor instance),someothersy.stemsmayprovidecontextualconditions
accordingto their ownassessmentof thesituanon.Whenthecontextischanged,the
systemautomaticallyprunestheknowledgebase(s)to removeandaddrelevantknowledge
blocks.

I System pr°vides _ _ Usergives _

a list of Context additional
Contextual Context
Conditions

System provides _ Descriptor = ___

a list of Triggering User selects one

Descriptors Condition decriptor

,1

I System provides

a list of
Referents

Refer_t = 4___ User selects onel

Referent Q

Abnormal

Goal Reached Condition

Reinforcement 1Mechanism

Figure 4.5. Intentional search and generation of user feedback.

A list of descriptors is either available in the text (or graphics) of the current referent, or

in a special referent called the index. Whenever a descriptor is selected in a referent, the
corresponding set of blocks in context is activated.

76

Whenadescriptoris activated,thesystemprovides users with a list of referents (from the
activated block[s]). They may select one of them (we will keep the single output

assumption in this phase of the development of CID, see section 4.2.1.2). The
corresponding referent is automatically displayed to users. Users then check if they are
satisfied with it. If they are satisfied, then they select "success". In this case, the goal is
said to be reached. If users are not satisfied, then they select "failure". In this case, the goal

is not reached. This is typically an abnormal situation for the system.
Figure 4.6 presents various possibilities when an abnormal condition occurs. The first

wrong cause might be that the user did not choose the right referent in the menu. If that was
a bad selection (e.g., the user missed the right item in the menu), then the possibility of
selection of another referent in the menu must be given. At this point, users have two

possibilities, either they select another referent in the menu and go back to step 3 of Figure
4.5, or do not f'md any other interesting referent (i.e., opportunistically changes their mind)
and start to browse the documentation (i.e., put them in an experimental browsing mode).

If users think that they did not select a bad referent, then the choice of the descriptor must

be questioned. If users did not choose the right descriptor, then they must have the
possibility to select another one, either by going back to the previous referent (i.e., where
the original choice was made), or by going to the index. In both case, users backtrack to
step 2 of Figure 4.5. In contrast, if users persist on the choice of the descriptor, the context
must be questioned. Users must have the possibility to update the context (go to step 1 of
Figure 4.5), or eventually to switch into an experimental browsing mode.

Abnormal
Condition

• [selection of a
I new referent in

/ _ I the menu
I

Context

User browses and System records user's Actions

Figure 4.6. Various possible strategies after an abnormal condition.

77

Figure 4.7 presents repercussions of the experimental browsing mode on the block base.
We have only developed the case of success, i.e., when the user is satisfied with a referent.
The system then records the corresponding knowledge block. The system automatically
asks the user to describe the successful referent. User are provided with an agenda of
descriptors. They may select one or eventually add one to the existing list and select it. The
system automatically builds a knowledge block with a reinforcement coefficient of 1. If it
already exists, then the system just positively reinforces the link between the descriptor and
the referent.

User Browses]

_r

i ccess ai'u 1i.e. this node is i.e. this node is

goodforme, y _ "_ badforme!

Record the node:

1. generate a block
2. store node as referent
3. store context

4. ask for a descriptor

eitl

I

new block

Figure 4.7. Experimental search and generation of a new block.

78

4.2.3. User Interface

4.2.3.1. Control panel

The CID control panel (CIDCP) is the central information management interface between
CID and the user. As CID is a multiwindow system, the control panel is displayed in one
of these windows. The others are used to display documents and other useful stacks, e.g.,
the agenda of document full descriptions. The CIDCP is composed of the following basic
elements.

Displays.
CIDCP includes two main display fields:

a. the main display field (MDF) used to present various kinds of information to the user,
such as: the current descriptor, the number of open documents, the list of current
open documents, etc.

b. the listener field (LF) used by the CID to display messages to the user, or by the user
to enter commands or natural language requests.

Controls.
CIDCP includes several control buttons:

a. Context

b. Current descriptor
c. History
d. Short description of a document
e. Graphical navigation
f. Open/close document
g. Search/browsing mode
h. Initial indexing (see section 3.3.1 for the description of the functionalities)
i. Text-to-hypertext (see appendix B for the description of the functionalities)

j. Hypertext-to-text

4.2.3.2. Basic stacks (windows)

The basic stacks are:

a. Control panel window
b. Context window

c. History window
d. Current open documents (text referent) windows (see sections 4.2.3.3 and 4.2.3.4)
e. Abnormal conditions window

f. Graphical navigation window
g. Initial indexing window

4.2.3.3. Various kinds of referents

A referent can be a section, a document or a collection. A collection is physically
represented by a stack of cards (in HyperCardrU), each card of this stack describing a
document of this collection (see Figure 4.8).

79

Collection Title

Document Indentification Date

DocumentTitle

Author(s) _ Directives

Preface / Revisions

Controls

Figure 4.8. Typical card describing a document.

A document is physically represented by a stack of cards (in HyperCardrU), each card of
this stack describing a section of this document (see Figure 4.9).

Document Title

1. Introduction

1.1. Purpose
1.1.2. Details

Text or Graphics

1.1.2.1. Functional aspects
1.1.2.2. Structuralaspects

Controls

Figure 4.9. Typical card describing a section of a document.

A

V
A
[]

1
t_

|
V

8O

4.2.3.3.1. Text referent

A text referent is represented by a generic card of the document stacks. This structure of

such a card is described in appendix B section B.2. Additional capabilities such as editing
are available, i.e., the user can edit the corresponding text 15.

A text referent is composed of the following elements:

Displays.
a. Document title field

b. Scrollable field displaying the upstream hierarchy of the referent
c. ScroUable field displaying the text expressing the content of the referent

Controls.

a. Built-in descriptors described in section 4.2.1.2
b. Content dependent descriptors that can be highlighted in the text to attract attention

from the user. Other possibilities are under consideration such as superimposing a
rectangle upon descriptors when the mouse spot is superimposed over them.

When the user selects a descriptor in the text, the system provides a menu of referents
(Figure 4.10). Sets of dependent referents are separated by dashed lines in the menu.

(Independent referents))

Selection of a descriptor)

Sets of referentsdependent

I

Referent- 1
Referent-2
Referent-3
Referent-4
Referent-5

I

Referent- 1
Referent-4

..,,...,,.t,.,,,,

Referent-2
Referent-3
Referent-5

Figure 4.10. Menus of independent referents vs. menus of dependent referents.

Menu items (referents) are ranked by reinforcement coefficients weighted by the inverse of
the number of descriptors in each referent. A first heuristic to detect dependent referents is
to check if they are in the same hierarchy and they are part of a path in this hierarchy. In
this case, the deepest one in the hierarchy is presented first.

4.2.3.3.2. Graphical referent

We have different support for graphical referents 16. Graphics can be made using graphical
software packages such as MacDraw, or scanned from already existing printed graphics.
Such graphics can be pasted into cards, and then generate graphical referents. Our system

15 There is no concept of security in the CID system. This concept can be included as a context slot.
Editing capabilities will be equiped with context-sensitive capabilities later.
16 This is mainly due to the capabilities offered by HyperCard.

81

allowsthecreationof mouse-sensitivezonesthatcanbesuperimposedonsuchgraphics.
To generategraphicaldescriptors,it is sufficientto buildmouse-sensitivezonesandattach
atextdescriptorto them.Thesystemprovidessuchacapability.

4.2.3.4. Visual aids

As tests of visual aids is still a research issue, let's start to describe what they are. Visual

aids are provided for users to augment their cognitive perception of the documentation
content. These visual aids can be local or global and are generally graphical.

Local visual aids.

They are intended to give the user information about where to go next. If we take the road
metaphor, this is equivalent to directions visible on the road signs as well as information
available on indicators in the car. In other words, local visual aids corresponds to

immediate information that the user needs to decide the next step in the documentation.

Obviously, the corresponding decision making process should be decreased by providing
the best possible information. This is the role of the knowledge blocks. Three kinds of
local visual aids can be provided:

1. the current context;

2. menus of referents when the user selects a descriptor;

3. graphical connections to previous and next possible referents (Figure 4.11).

Task-3C°ntextIndicator]User-1
/ next- 1

/Jnext-2 []

Period-6 historic- 1m current _ i

_next-3 !
I next-4 |

..._ _,,

Figure 4.11. Local visual aids: current context and local graphical connections

Global visual aids.

They are intended to give users information about where they are now in broader
perspective. If we take the road metaphor, this is equivalent to road maps. They can be
(Figure 4.12):

1. graphs of nodes around the current node (a window on the documentation), these
graphs can be either a hierarchical organization of the documentation or semantical
relations between nodes (with possibility of zooming);

82

2. historicaltraceof whathasbeenbrowsedsofar showedeitheronagraphicalmapor
in a list form.

Eganet al. (1989)comparedpeopleusingaconventionalbookandaSuperBook
(hypertextversionof theoriginalbook).They found that readers used the table of contents
(overview) much more in SuperBook than in the printed book and that they read about the
same number of sections of the text even though they solved the problems in less time.
This justifies the needs for global visual aids.

Node Hi story

before- 11367
before-1136
before- 113
before- 11
before- 1

current

l before-1 _k next-1

before-2 _-- t next-2

before-3 "_ current

before-4// next-3

before-5 _'
next-4

Figure 4.12. Global visual aids: node history and nodes around the current node
where the node history is highlighted and

the most relevant next node is suggested (here in italics underlined).

Foss (1988) claims that the browsing paradigm leads to two problems: the embedded
digression problem of multiple sidetracks and redefinitions of current interests, leading
users to forget the digressions they wanted to make, and the art museum phenomenon
where you can spend all day in a large art museum and are not be able to remember any
particular painting in detail. To alleviate these problems, this author has implemented four
new kinds of browsing support in NoteCards where Foss did not believe that the original
overview diagram mechanism was sufficient: graphic history lists, history trees, summary
boxes, and summary trees.

83

=

|

!
|
_m
i
!
i

!
Z

-z

_z

i

Chapter 5

Theoretical Considerations

In this chapter we discuss some of the theoretical results and perspectives arising from our
work, as well as the relation to other work.

5.1. Navigation in HyperSpace

The main basic assumption in this research is that the hyperspace is hierarchically
structured. However, transverse links can be built. Two major definitions are needed.

First, indexing is the process of building descriptors (descriptions) from referents 17 and
linking them together in a given context (r->d). Second, information retrieval is the process
of retrieving referents from available descriptors in a given context (d->r). Information
retrieval is a process of abduction using indexing knowledge, i.e., knowing r->d and d, r
becomes a valid hypothesis. We say that indexing defines a set of semantic relations that
are used in information retrieval. Figure 5.1 shows an example of semantic relations
between referents via descriptors.

5.1.1. Theory of Navigation in Hyperspace

5.1.1.1. User's search mode and ontology

Automatic identification of users' search mode is still an issue. Several cases may occur:

- the user knows what they are looking for (they have seen the referent before). This is

just a problem of recall,

users do not know in advance the referent(s) they are looking for. This is a problem of:

- reusing knowledge blocks that have been built before,
- browsing and building their own indexing.

This overall process has been called: index management and maintenance. In other words,
• users browsing and formulating their descriptions of the referents content contribute to the

augmentation of the block base. The more the block base grows, the more it becomes an
ontology of the knowledge included in the documentation as perceived by users. The CID

17 Definitions of descriptors and referents are given in section 2.1.1.2.

85
PRECEDING PAGE BLANK NOT FILMED

can then be considered as a knowledge acquisition tool for users to build their own

ontology of the documentation.

r6

d
rl

r5

4

/

r2

?
r3

r4

Figure 5.1. Example of semantic relations between referents via descriptors.

5.1.1.2. The block representation as a navigation aid

Knowledge blocks have been already described in Chapter 3.

Recursive aspect of blocks.
In a referent of a block, there may be a set of descriptors from which users can get another
referent, and so on. This creates an implicit embedded block structure that can be

represented as in Figure 5.2.

rll tll,llrll,ll ...

Figure 5.2. Embedded block structure.

IE L

86

wherethe block (d11,1,{r11,11,r11,12.... }) is embeddedin the block (dl, {rll, r12, ...}).
In other words, when the user selects the descriptor dl and the referent rll, if the descriptor

dll.1 is included in the referent r11, then users have the opportunity to select in sequence
the descriptor dl 1.1 and the referent rl 1,11, and so on. The figure 5.1 presents an example
of semantic relations between referents via descriptors. Referent rl includes two descriptors
dl and d2. The block (d3, {r3}) is embedded in the block (dl, {r2, r3}). The path (dl,
{r3}) is called a short cut of the path (dl, {r2}) + (d3, {r3}). Also, the block (dT, {rl}) is
embedded in the block (d2, {r6}) and shows a circularity.

Consequently the block representation is capable of describing an integrated network of

embedded descriptors/referents entities.

What to do next.

As we already mentioned, blocks can help users decide what to do next. The way
descriptors and referents are organized defines the hyperspace topology. In other words,
the infrastructure of the hyperspace influences the decisions of users when they browse. It

is also reasonable to assume that users ability to find the information they are looking.for in
the hyperspace depends on their ability to navigate in such environment. This navigation
problem includes knowledge about the navigation capabilities as well as knowledge about
the domain (i.e., documentation contents). Indeed, it is clear that if users know about the
vocabulary of the domain, descriptors-referents relationships are likely to be more
understandable than for novices who have to learn and eventually build their own domain

ontology.
An interesting research issue is to understand if navigation is content-sensitive or

infrastructure-sensitive. This kind of research could be carried on by observing what users

are selecting more often between the built-in descriptors and the content-dependent
descriptors. Several issues may arise from this research, e.g., content-dependent
navigation, hypertext infrastructure effect on user navigation, assessment of the internal
structure of the documentation, and assessment of user's skill (comparison between

novices and experts).

5.1.2. Hypertext Metalevel

Separating the knowledge-base indexing and information retrieval mechanism from the
actual hypertext provides modularity of CID, i.e., both can be edited and maintained

separately. However, this is not the only important consideration in this issue. Generally,
indexing as well as information retrieval are performed by humans. This separation

supports, the concept of intelligent assistant system, as described in (Boy, 1991), built on
top of the hypertext. It is indeed a metalevel on top of hypertext. A major advantage of this
architecture is that this meta-level is easily programmable and allows the inclusion of
knowledge on the links of the hypertext. The fact that the block representation maps well
into the hypertext representation is a complementary reason to support such a separation.

5.2. Acquisition of Indexing Knowledge

5.2.1. Semantic Indexing

In the conventional approaches to indexing, we have seen indexing as a frequency-based
process. Indexing would be improved if documentation of users' needs are taken into
account in index generation and maintenance. Generally, users refine (and often define)

87

their needsby trial anderrorevaluatinginformationretrievalresults.Suchanassumption
impliesthenecessityof aninteractingenvironmentthatallowsincrementalacquisitionof
indexingknowledge.

By semanticindexing,wemeanbuildingsemanticrelationsbetweendescriptors
themselves,betweenreferentsthemselves,andbetweendescriptorsandreferents.
Resultingsemanticnetworksmustbeavailabletousersin aneasy-to-usefashionas
describedin section5.1.1.2.

Indexingis adecisionmakingprocessthatmustbedirectlyaccessibletotheuser.This
decisionprocessconcernsbuildingthesemanticrelationsalreadydescribed.The
correspondingknowledgerepresentationusedto handlethisdecisionprocessmustallow
repairin caseof failure,i.e.,whentheuserdid notmaketherightdecision.It shouldallow
incrementaltransformation.

If semanticindexinghasto beperformedby users,howmuchcanweaskthemwithout
disturbingthemin theirprimarytask,thatis,in theusualcase,informationretrieval.The
techniquedescribedin section3.3hasbeendesignedwith thisquestionin mind.Thatdoes
notmeanthatall userswill accepttheCID semanticindexingjob.This is anopenquestion
thatstill hasto betested.It is actuallyabasicresearchissueto investigatetheinterface
requirementsfor intelligenthuman-machinecooperation.Acceptanceof suchnew
technologybyusersisaverycomplexissuethatmayinvolvelong-termperspective.
Indeed,experiencedpaybackof this techniquemaygreatlyinfluenceacceptance.

5.2.2. Extracting Blocks from Traces in the Hyperspace

5.2.2.1. Analysis of user's traces

In the experimental search mode, the system records users' actions, i.e., traces generated
by users browsing in the hyperspace. When users select "success", this means that they are
satisfied with the information they have gotten in trace T. However, it is not possible to
know from this data if the complete trace is needed or part of it. If such a trace is recorded
and analyzed off-line, it would be possible to know statistically what conjunction of
referents the user needs when he selects a descriptor.

Analysis of the selected descriptors_
In the experimental search mode, the user selects descriptors that he finds close to his
needs. However, all of them may not be relevant. The user may chose a descriptor because
other potentially more relevant descriptors are not currently available. The first problem is
then to identify what are the relevant descriptors in the trace.

Analysis of the selected referents.
Some referents may provide a piece of needed information but not be sufficient for the
user. This may be a reason for him not to select the "success" button and select another
descriptor in the corresponding referent.

Analysis of the trace.
An important question is: shall we keep the last link (dn-1 -> rn), or the link (do -> rn), or

an intermediate link (dj -> rn (0_:_j.<_n-1)), or a chain of referents (including rn) after dj?
It is important to notice that these problems are studied experimentally.

88

ReferentTrace

Referent-3
R_fer_m-8

i Referent-31 [
Referent- 1
Referent-99

Referent-31

t Descriptor- Referent- 1

1 1

Descriptor-2 < Referent-4

Descriptor-76

Descriptor-45

CKeepReferent _ _////_/S_quSen_/a_/f_ (GlobalView)

Don't Keep) _'///_/P/_/y[_/////_ (Local View)

Figure 5.3. Interface for memorization of referents.

5.2.2.2. User interface capabilities for extracting useful referents-descriptors relations

We claim that it is more productive for users to analyze their traces immediately after the
fact when they are still in context than off-line. This is due to the fact that users hardly
remember what they did when they do not remember well the context of their actions. We
already discussed the problem of user acceptance due to the secondary task imposed by this
process of indexing in section 5.2.1.

To improve user ability and motivation to perform such trace analysis, an intelligent
interface can be used (Figure 5.3). This interface should provide lists of descriptors,
referents, and relations present in the trace in such a manner that the user can manipulate
them easily and rapidly. We are still working on such an interface. Implementation and
results will be available in the next report.

5.2.3. Context Clustering

We expect a large amount of blocks to be generated from the incremental knowledge

acquisition. We also expect regularities coming out from the context patterns. For instance,
the same class of users do the same things in similar situations. This can be handled by
machine learning techniques such as learning from examples (Mitchell, 1982) or conceptual
clustering (Fisher, 1987).

Our approach 18 to construct conceptual clusters of contexts is incremental, i.e., new
objects need to be assimilated one at a time. In his COBWEB system, Fisher (1987)
proposes operators that allow incremental incorporation of new objects (in our case context

18 We have not starled this particular effort yet. However, discussions have already started between the
advanced interaction media group and machine learning specialists.

89

patterns)intoaclassificationtree,whereeachnodeisaprobabilisticconceptthat represents
an object class. These operators include:

- classifying the object with respect to an existing class,
- creating a new class,
- combining two classes into a single class, and
- dividing a class into several classes.

We will take the same approach to context clustering. Let us assume that we have a block
base including blocks of the form described in section 4.2.2.3. Each block includes a
context pattern xi such as defined in section 3.2.2.1:

xj = (co#) A Coj(2) A ... A Coj(nj)) (5-0

5.2.3.1. Placing a context pattern in an existing class

Quoting Fisher, placing a new context pattern in an existing class is probably the most
natural way of updating a set of classes. Let's take an example that will illustrate the

method. A new context pattern is (Paul Smith A Diagnosing PGS). We already have the

following classification tree:

!Xs onau l!Operations people I 1 DesignersJ I I Monitoring I

l(Op raaonsPeople A Diagnosing)]

I(Jack 'nes/, D gnosing .CLSS] I (Paul Smith A Diagnosing mS) I

Figure 5.4. Placing a new context pattern in an existing class.

Each contextual condition c_j(a) belongs to a classor is a class itself. In the current example
(Figure 5.4), "Paul Smith" belongs to the class of "Operations People", and "Diagnosing

PGS" belongs to the class "Diagnosing". Then the conjunction (Paul Smith A Diagnosing

PGS) is an instance of the existing class (Operations People A Diagnosing).

5.2.3.2. Creating a new class

A new class is created whenever a new context pattern cannot be placed into an existing
class. This new class is identical to the new context pattern. It can be linked upwards to

90

classesof someof thecontextualconditionsif any.In thecurrentexample(Figure5.5),
"BarryNorth" belongsto theclassof "Designers",and"DiagnosingFTS"belongsto the
class"Diagnosing".Thentheconjunction(BarryNorth^ DiagnosingFTS)is aninstance
of thenewclass(Designerŝ Diagnosing).

[Astronauts II people I I Designers I Diagnosing [Monitoring

(Operations People ^ Diagnosing) (Designers A Diagnosing)

_ North ^ Di_

[(Jack Ames ^ Diagnosing ECLSS)[[(Paul Smith ^ Diagnosing PGS) [

Figure 5.5. Creating a new class.

52.3.3. Merging several classes into a single class

As we assumed that compound classes are conjunctions of classes or objects, merging two
classes involves creating a new class and replacing the instance-conjuncts by the
corresponding class-conjuncts of the classes being merged. For instance in Figure 5.6a,
"Operations People" and "Designers" are both "Users", and they are both performing a
diagnostic task. Figure 5.6b shows the resulting context network after merging (Operations

People A Diagnosing) and (Designers A Diagnosing FTS) into (Users ^ Diagnosing).

The way we do merging can be called a generalization also.

Diagnosing I Monitoring

(Operations People ^ Diagnosing) (Designers ^ Diagnosing)

Figure 5.6a. Initial context classes before class merging.

91

Asu'omauts [Operatio_peoplel Designers Diagnosing [Monitoring

A Dia

(Operations People A Diagnosing)]] (Designers ^Diagnosing)

Figure 5.6b. Context classes after class merging.

5.2.3.4. Splitting a class into several classes

Splitting is roughly the inverse operator of merging (Fisher, 1987). Splitting happens when
a compound class is an over-generalization. For instance, we may realize afterwards that

(Users A Diagnosing) is too general because it happens that the class (Astronauts ^

Diagnosing) is very different from the other classes (Operations People A Diagnosing) and

(Designers A Diagnosing). Thus, two classes will be created (Astronauts A Diagnosing)

and (Engineers ^ Diagnosing) for instance (Figure 5.7). If the class "Engineers" does not

exist already, this process leads to the creation of a new class, subclass of "Users" and
superclass of "Operations People" and "Designers".

Engineers

Astronauts I I Operations people] Designers Diagnosing [Monitoring

(Astronauts ^ Diagnosing)

[(Operations People ^ Diagnosing)

(Engineers A Diagnosing)

[(Designers A Diagnosing)

Figure 5.7. Splitting a class into several classes.

5.3. Generation and Maintenance of a Large Documentation

In the Space Station documentation for instance, documents are generated by individuals
that are not necessarily connected between each other. They are theoretically connected

through a top-down hierarchical structure. However, there is no transverse link anticipated
by the current documentation system. This is actually a classical problem in the

92

constructionof avery largedocumentation,e.g.,sometimestwo similardocumentscanbe
generatedbyindependentteams.Theproblemis thentocheckif similardocumentsare
describingthesamethings.If it is thecase,cantheybemergedin a singledocument?

In orderto solvethisproblem,it is necessaryto generatedescriptorsthatbothrepresent
documentstheydescribe,andbeeventuallysharedbyotherdocumentgeneratorsif
necessary.If thesedescriptorsarewell defined,wecanexpectthatcorrelationbetween
documentscanbemeasuredto checkthedegreeof interdependencebetweendocuments.

5.3.1. Generation of Descriptors

5.3.1.1. Generation of descriptor at the user level

Documentation users should be provided with a dictionary of descriptors. This will reduce
the number of new descriptors that have similar meaning as already def'med ones (by other
users). However, if users do not f'md any convenient descriptor in the dictionary, they
must be able to define a new one. Definition of such new descriptors should be checked in
the higher levels for consistency with the rest of the documentation. Thus, whenever a
descriptor is generated, it must be sent up in the documentation hierarchy.

5.3.1.2. Maintenance of a descriptor dictionary

Documentation users should be provided with a thesaurus of descriptors. This will reduce
the number of new descriptors that have meanings similar to existing descriptors (defined
by other users). However, if users do not find any convenient descriptor in the dictionary,

they must be able to define a new one. Definition of such new descriptors should be
checked for consistency with the rest of the descriptors. In practice, whenever a descriptor

is generated, it must be sent up in the documentation hierarchy. This consistency check
problem is detailed below.

Levels

Library j

Collections _.................. '. 1

Series

Chapters _-,,,. 4

Sections _................. _\, 5

Figure 5.8. Example of hierarchical levels in documentation
(document space).

93

Therearetwo setsof levelsthatmust be defined. First, a major assumption in CID is that

the documentation is organized hierarchically. For instance, level 0 corresponds to the
library level, level 1 to the collection level, and so on (see Figure 5.8). We will define these
levels as hierarchical levels in the documentation or "doclev". Second, descriptors are also

structured hierarchically. In this case, we will talk about hierarchical levels in the
descriptors or "deslev". For instance, if a descriptor dl is defined at deslev n-1 and d2 at
deslev n, and dl and d2 are dependent then dl is a generalization of d2. Even if doclevs do

not map onto deslevs and conversely, there is some loose connections between them. The
overall thesaurus of a documentation is ratified at the highest doclev. This ratification

process also provides an explanation of why a new descriptor has been assigned to a
specific referent. In particular, when a large documentation is being built, people designing
higher doclevs must be consulted when new descriptors are being built in lower doclevs.

In CID, as each referent has an index (i.e., a list of descriptors), an index of a referent r
at doclev n of the documentation structure should be a generalization of the index of a

referent that is a child ofr at doclev n+l (Figure 2). The concept of inclusion has to be
understood taking into account the concept of classes and objects. For instance, a
descriptor at level n may be a class of another descriptor at level n+l. Let dl be a descriptor
at doclev n, there exists necessarily a descriptor d2 at each doclev m < n that is either dl or
a class of dl:

Vrp, doclev(rp)=n, 'v'dle D(rp), Vm<n,

ff 3rq, doclev(rq)=m and rp childOf (1) rq

then 3 d2_ D(rq) and dl childOf (1) d2 (5-2)

where doclev(r) is a function that maps the set of referents onto the integer set {0, 1, 2,

...}, the relation "ro childOf (1) rQ" is true when rp is a child ofrq in the referent space (the
same definition ap'plies in the d+scriptor space for "dl childOlXl) d2"), and D(r) is the set of

descriptors attached to the referent r. If the expression (5-2) is not verified for a particular
descriptor dl then dl has to be added to (or a new class d2 has to be defined that includes
dO the index of referents r that are located on the path from rp to the root referent (level 0

q nin the referent space). Thus, testing the sausfacnon of (5-2) is a mean of lmprow g

completeness and consistency of the overall dictionary.
It is interesting to note that the descriptor space and the referent space should have the

same partial ordering relations between related classes in the two spaces. In particular, if
the descriptor space maps the referent space well, navigation in the documentation is
facilitated.

5.3.2. Incremental Reinforcement from User's Feedback in Context

We have chosen the following heuristic to record a minimal set of parameters during the
use of the system. We have noticed that the relevance of a contextual link {di, (r)} between
a descriptor di and a referent r depends on user's feedback (success or failure) on r, the
frequency of feedbacks on r, and the importance that the user assigns to this referent r. The
semantic relevance Rel(r Idi.C) of a referent r with respect to a descriptor di in context C

has been formally defined as follows:

Rel (rldi. C) = Z I---L- Z If
t-ts t-tf

s_ S,)al.c fe Frj disc (5-3)

where t is the current time, ts (tf) is the time when the user selected the success s (failure f),

Sr tdi.C (Fr Idi.C) is the set of successes (failures) so far at time t, and Is (If) is the

94

importanceassignedtor bytheuserwith respectto di in context C. In practice, Is and If

may be set up as constants.

5.3.3. Semantic Correlation between Documents

In the Space Station documentation application, documents (referents) are generated by
people that are not necessarily connected to each other. They are theoretically connected
through a top-down hierarchical structure such as the one presented in Figure 5.8.
However, there is no transverse link anticipated by the current documentation system. This

is actually a classical problem in the construction of a very large documentation, e.g.,
sometimes two similar referents can be generated by independent teams. The problem is
then to check if similar referents are describing the same things. If this is the case, can they

be merged into a single referent?
In order to solve this problem, it is necessary to generate well-defined descriptors that can

be shared by other documentation writers. If these descriptors are well defined, we can
expect to check the degree of interdependence between referents by measuring their
semantic correlation.

A semantic correlation between two referents should express the resemblance between the
content of each referent. It can be constructed taking into account the descriptors attached to
each referent. These descriptors characterize dimensions along which each referent can be
located in the descriptor space. If descriptors express the semantics of the referent space,
then the descriptor space can be called semantic space by extension. The main problem is
that these dimensions are not independent. As already explained, the descriptor space
represents relations between descriptors that express inheritance or property relations.
Furthermore, it seems reasonable to let people index their referents without constraining

them with the problem of descriptor dependence. The problem is then to design a
representation that makes explicit descriptor dependencies. The basic idea is to build a
semantic network where nodes are descriptors, and links are hierarchical (inheritance) or

property links. Taking this approach, descriptors are organized into descriptor dependency
clusters. These clusters may be loosely connected or actually independent.

We consider that the following parameters affect semantic correlation between two
referents rl and r2:

- the number of descriptors nds(rl, rz) shared between rl and r2,
- the semantic relevance of a referent with respect to a descriptor in a given context

(derived from user feedback),
- the hierarchical level of the descriptors in each referents,

- the number of properties shared by each shared descriptor 19.

Let us assume that we want to compare two referents rl and r2. Salton (1989) defines the
similarity between two referents rl and r2 by a function of the number of descriptors shared
by both referents, rl and r2 have two descriptor lists D(rl) and D(r2). The intersection
between D(rl) and D(r2) is computed using the following rules:

Ifd e D(rl) and [3 d' _ D(r2), 3 n, such that d' = childOf(n)(d)]

then d e D(rl) n D(r2) (5-4)

19 This parameter is expected to be relevant and important, however we do not take it into account at this

stage of the development of CID.

95

Ifd e D(rl) and[3 d' e D(r2), 3 n, suchthatd -- childOf(n)(d')]

thend' e D(rl) n D(r2) (5-5)

where the function d'=childOf(n)(d) means that d' is a child of generation n of d. For

instance, childOf(°) would be identity function, childOf(1) would be the direct child function

(first generation), childOf(2) would be the grand child function (second generation), etc. In
other words, we keep the most general descriptors in the intersection.

If the current context is taken into account, then the descriptor list must be restricted to the

list of descriptors corresponding to the contextual links that are valid in the current context.

If the set D(rl) n D(r2) is not empty, then it can be ordered with respect to their

corresponding semantic relevances. We obtain the following table:

D(rl) n D(r2) dl d2 d3

rl rank11 rankl2 rankl3
r2 rank21 rank22 rank23 .QQ

where rank12 is the rank of descriptor d2 in the subset D(rl) _ D(r2) of the descriptors of

rl. Each rankii is computed from the relative position of di in rj with respect to the

relevance Rel(rj I di.C). For instance, the above table shows the following order:

Rel(rl I dl.C) < Rel(rl I d2.C) < Rel(rl I d3.C) < ...
Rel(r21 d:.C) < Rel(r21 d2.C) < Rel(r21 d3.C) < ...

The Spearman rank correlation coefficient applied to this problem gives the following
formula (Snedecor, 1946):

Psem(rl, r21 C) = 1 -

6 _ [rankl,i - rank2,i] 2

die D(rl)nD(r2)

nds(rl, r2) 3 - nds(rl, r2) (5-6)

where nds(rl, r2) is the number of descriptors shared between rl and r2, the following

relation: 1 < rankji _<nds(rl, r2) holds for j=l or 2, and 0 < 9Sem(rl, r21 C) < 1.
This semantic similarity measure can be used as a navigation aid. Two generic cases can

be described as derivations of ordered lists of referents semantically correlated to: a given

referent, or a complex query.

1. From a referent rl, PSem(rl, r21 C) may be computed for all the referents r2 that

share descriptors with rl.

. A complex query involving the conjunction of several descriptors can be

represented by a set D(Q). An analogous formula psem(Q,r I C) can be derived for
any referent r that shares at least one descriptor with Q.

In both cases, the corresponding ordered list of referents can be presented to the user as a

suggestion of what to do next.

96

In theacquisitionof contextuallinks,it canbeusedto fine tunereferentdescriptions.For
instance,if tworeferentsrl andr2areverymuchcorrelatedbut theuserdonotagreewith
thisresult,thenreferentdescriptionsD(rl) and/orD(r2)haveto berevised.

5.4. Relation to Other Work

5.4.1. Regarding Blocks as Procedures

Index knowledge acquisition is related to procedural knowledge acquisition because of the
common interest in the way actions are handled by users according to context. Acquisition

of procedural knowledge from domain experts has been explored earlier in the MOLGEN
system (Friedland, 1981).

A considerable effort has been already invested in modeling procedures. PRS (Procedural
Reasoning System) work (Georgeff & Lansky, 1986) is very similar to ours. However,
the notion of context in the knowledge areas (KA) of PRS is slightly different than the one
used in the block KR. PRS does not currently have the notion of abnormal condition. Other
work in this direction includes architectures which try to couple sensing to acting.

From the perspective of differentiating contextual conditions from triggering
preconditions, similar ideas have been already developed in AGE (Nii & Aiello, 1979). In
BB1 and GARDIAN, a similar representation has been implemented (Hayes-Roth,

Washington, Hewett & Hewett, 1989).
From the perspective of representing insufficient or incomplete procedures, both humans

and computers must be able to react promptly to new information, and they must be able to
change or repair their knowledge when new information produces contradictions or when
initial assumptions are withdrawn. Explicit representation of abnormal conditions or
exceptions provides a simple mechanism for capturing knowledge when we discover it.
Variable precision logic is the closest representational mechanism to the blocks (Michalski
and Winston, 1986). Similar approaches have already been described in (Winston, 1983)

and (Williamson, 1986).
The closest work has been done in telerobotics (Boy & Matht, 1989; Matht, 1990). In

her thesis work, Nathalie Math6 has developed the block representation as a support for

implementing intelligent assistant systems in process control tasks. Concepts that she has
developed are very similar to those we have presented in this technical memorendum, ever,
if she concentrated primarily on dynamic environments (by comparison documentation is a
static environment). She did not develop any formal knowledge acquisition mechanism that

could be implemented using blocks.

5.4.2. Intelligent Hypertext Perspective

To develop intelligent hypertexts, it is necessary to understand better how the users behave
when they use such tools. In other words, work carried out on user modeling in this
domain is very purposeful.

Canter, Rivers and Storrs (1985) define four graph theory-like classes of user navigation

behavior: paths (a route that does not cross any node twice), rings (a route that returns to
the node where it starts, this node being called the base node of the ring), loops (a ring that
does not contain any ring as part of itself, i.e., it was a path until users returned to the base

node), and spikes (a route where the return journey retraces (i.e., backtracks) exactly the
route taken on the outwards journey). Based on these elementary structures, the authors

characterize five different user navigation strategies: scanning (mixture of deep spikes and
short loops), browsing (many large loops and few large rings), searching (ever-increasing

97

spikeswith afew loops),exploring(manydifferentpaths),andwandering(manymedium-
sizedrings).Theauthorscomparedusersnavigatingadatasetbyhypertextandbydirect
commandselectiontodesirednodes(acombinationof gotoandinformationretrieval)and
foundthathypertextusershadmanymoreringsandspikesthanthedirectaccessusersbut
hadaboutthesamenumberof pathsandloops.

Semanticindexinghasbeeninvestigatedby severalauthors.Dumaisetal. (1988)
proposeamethodfor organizingnodesintoasemanticstructureon thebasisof theoverlap
of thewordsusedin thosenodes.StottsandFuruta(1988)proposedamodelof hypertext
basedonPetrinets.Their systemenforcesbrowsingrestrictions,e.g.,deactivatesome
links.Weyer(1988)advocatethefactthatinformationshouldbeadaptableto the learner's
preferences,andlinks shoulddependon theuser'spreviousactionsandcurrentgoals.This
point of view supportquiteperfectlyourknowledge-basedapproachtohypertext.A natural
language(NL) approachto hypertextbrowsinghasbeenproposedbyWhalenandPatrick
(1989).Their systeminterpretsNL requestsfromtheuserin thecontextof thecurrent
locationin thehypertext,andproposesnewnodesaccordingto this interpretation.

Fischeret al. (1989)proposeadesignenvironmentintegratingahypertextsystem
containingtherationaleof theadvicegivenby anAI system.Thehypertextsystemusesan
alternativeimplementationof theIssue-BasedInformationSystem(IBIS) method(Cortklin
& Begeman,1988)to structureargumentsfor andagainstthevariousdesignoptions,and
theAI systemcanthendumptheuseratthelocationin thishypertextthatcorrespondsto
theuser'scurrentundecideddesignproblem.

Kibbyt andMayes(1989),in theirStrathTutorhypertextsystemtry to eliminatetheneed
for exclusivelymanualmethodsfor creatinglinks betweenhypertextnodesbygenerating
links basedonknowledgeacquiredwhentheuserbrowsesthroughthesystem.

Also,Monk (1987)presentsamethodfor constructingapersonalbrowser.In this
approach,thesystemmonitorstheuser'snavigationbehaviorandinterruptstheuserto ask
whetherit shouldaddanodeto thebrowserwhenit hasbeenaccessedfrequently.

98

Chapter 6

Personnel and Publications

In addition to the work described herein, this project included, as separate components, a
study of procedure management and maintenance in the telerobotics domain, and a study of
potential applications of intelligent assistant system in aerospace technology. For
completeness, the personnel and publications listed below include all components of this
on-going project.

6.1. Personnel

A number of researchers have been associated with this research effort. Guy Boy was the
principal investigator. Jody Gevins, Bharathi Raghavan, Fabian Garcia Pastor (University
of Madrid, Spain), and Joshua Rabinowitz provided a great deal of implementation.

Nathalie Math6 helped with knowledge representation development. Thomas Gruber was
associated as a Stanford consultant from the beginning, especially on the knowledge
acquisition part. Ann Patterson-Hine and Joe Conley are applying CID to F-18 emergency

procedures. Recently, Ctcile Paris from the Information Sciences Institute of the
University of Southern California, joined the project by adding a natural language
processing contribution. Yaron Gold (NRC Research Associate) started to focus on the
difficult problem of context representation and acquisition.

We also received a lot of feedback from the Boeing Advanced Technology Center in
Seattle when they were involved in the Corporate Memory Facility, in particular Jeff
Bradshaw and John Boose.

6.2. Major Publications and Presentations

Boy, G.A. (1989). Interactive Knowledge Acquisition for Intelligent Documentation.
Proceedings of the AAAI-89 Workshop on Knowledge Acquisition: Practical Tools and
Techniques, Detroit, MI, August 23.

Boy, G.A. (1989). The Block representation in knowledge acquisition for computer
integrated documentation. Proceedings of the Fourth AAA1-Sponsored Knowledge
Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, October 1-6.

Boy, G.A. (1989). Computer integrated documentation: a problem of knowledge
acquisition and representation. Proceedings of the ESA-ESTEC Workshop on Human
Factors Engineering." A task Oriented Approach, Noordwijk, The Netherlands, November
21-23.

99

Boy, G.A.,& Gruber,T. (1990).IntelligentAssistantSystems:Supportfor Integrated
Human-MachineSystems.Proceedings of the AAAI Spring Symposium on Knowledge-
Based Human Computer Communication, Stanford, March 27-29.

Boy, G.A. (1990). Acquiring and Refining Procedure According to Context.Proceedings
of the AAAI-90 Workshop on Knowledge Acquisition: Practical Tools and Techniques,
Boston, MA, July 29.

Boy, G.A. (1990). Advanced Interaction Media. Proceedings of the Third Conference on
Human-Machine Interaction and Artificial Intelligence in Aeronautics and Space. Toulouse,
France, September 26-28.

Boy, G.A. (1990). Acquiring and Refining Indices According to Context.Proceedings of
the Fifth AAAI-Sponsored Knowledge Acquisition for Knowledge-Based Systems
Workshop, Banff, Canada, November 4-9. To appear in the Knowledge Acquisition
Journal.

Boy, G.A. (1991). Intelligent Assistant System. Textbook. Published by Academic Press,
London.

Boy, G.A. (1991). Presentation of a Poster on "Context Acquisition in Information
Retrieval", at the Symposium on Learning Methods for Planning and Scheduling, held at
Stanford University, January 5-6, 1991.

Boy, G.A. (1991). Computer Integrated Documentation. MIT Conference on The Social
Creation of Knowledge: Multimedia and Information Technologies in the University, held
at MIT, April 6, 1991. To appear in a MIT Press Book: The Social Creation of
Knowledge.

Boy, G.A., (1991). Use and Acquisition of Contextual Knowledge in Information
Retrieval. Proceedings of the AAAI Workshop on Knowledge Acquisition: From Science

to Technology to Tools, Anaheim, California, July.

Boy, G.A. & Pads, C. (1991). An Intelligent Document Browsing System that
Incorporates Indexing in Context. Proceedings of the AAAI Workshop on Intelligent

Multimedia Interfaces, Anaheim, California, July.

Boy, G.A. (1991). On-line User Model Acquisition in Hypertext Documentation.
Proceedings of the IJCAI Workshop on Agent Modelling for Intelligent Interaction,
Sydney, Australia, August.

Boy, G.A. (1991). Some Theoretical Issues on the Computer Integrated Documentation
Project.Proceedings of the Sixth AAAI-Sponsored Knowledge Acquisition for
Knowledge-Based Systems Workshop, Banff, Canada, October 6-11.

Boy, G.A. (1991). Indexing Hypertext Documents in Context.Proceedings of the
Hypertext'91 Conference, San Antonio, Texas, December.

100

l

m

Z

Appendix A

Measures of Vector Similarity

This appendix presents various measures of vector similarity introduced in section
2.1.5.1.2 of the text.

A.1. Inner Product

Evaluation for binary descriptor vectors:

Evaluation for weighted descriptor vectors:

rll

£ xi Yi

i--1

A.2. Dice Product

Evaluation for binary descriptor vectors:

Evaluation for weighted descriptor vectors:

m

2£ xiy i
i=l

l,n m

2 xi2 + 2 Yi2
i=l i=l

A.3. Cosine Coefficient

Evaluation for binary descriptor vectors:

101

Evaluationfor weighteddescriptorvectors:

m

Z xi Yi

i=l

A.4. Jaccard Coefficient

Evaluation for binary descriptor vectors:

Ixnq

Evaluation for weighted descriptor vectors:

m

Z xi Yi
i=l

m m m

Z xi2 + Z Y_- Z xi Yi
i=l i=l i=l

102

Appendix B

From Text to HyperText

B.1. Introduction

Most of Space Station documentation is organized as described in section 2.2.3.1. Even if
the text can be read linearly (i.e., page after page), it is also already organized hierarchically
by documents, sections, subsections, etc. The main idea is to scan a document and extract
the structure out of it. The corresponding hypertext version of the document will be an
HyperCard stack organized in generic nodes such as presented in Figure B. 1.

Document Title

1. Introduction
1.1. Purpose
1.1.2. Details

Text or Graphics

1.1.2.1. Functional aspects
1.1.2.2. Structural aspects

Controls

Figure B. 1. Generic hypertext node (or referent) for the CID

|
V'

A generic hypertext node or referent in the CID includes:

- a Document Title field;

- a scrollable field displaying the upstream hierarchy of the referent;

103

- a scrollable field displaying the text (or graphics 2°) expressing the content of the
referent;

- a scrollable field displaying the table of contents at the level of the current node, e.g., in
figure B. 1, the table of contents of the section "1.1.2. Details" is displayed;

- a zone including the controls described in section 4.2.3.3.

B.2. Text Referent Functionalities

B.2.1. Document Title Field

It displays the title of the document where the current referent is included. By clicking on it,
the user will select the descriptor "First Page of the Document".

B.2.2. Hierarchy Field

It displays the upstream hierarchy of the current referent. Each line is a section title of the
document. Higher levels in the hierarchy are displayed at the top. By clicking on a line of
this field, the user will select the descriptor which will cause the display of the table of
content of the corresponding section title.

B.2.3. Text Field

The text field display the content of a referent. Each time the user clicks on a word in the
text, this word is selected and kept in a variable called "Holder" in HyperTalk. If this word
is included in a descriptor and this descriptor is in a knowledge block, then the system

displays a menu of referents attached to this descriptor. An algorithm for detecting if a
word is included in a referent is presented in section 4.2.1.3.

As already mentioned in section B.2.2, this field can also be a table of contents. In this
case, each line is clickable. By clicking on a line of this field, the user will select the
descriptor which will cause the display of the corresponding section (that can be also a table
of contents).

B.2.4. Built-in Descriptor Zone

Built-in descriptors are described in section 4.2.1.2. They actually include the "success"
and "failure" buttons.

B.3. Construction of an Explicit Hierarchical Structure

We assume that the text to be convened in the CID format is written sequentially in the

depth-first form of the hierarchical structure presented in figure 4.1. The goal of the
following algorithm is to build an explicit hierarchical structure as shown on Figure 4.1
from a flat text. The source code of this algorithm can be obtain upon request.

20 Note that this field is not yet scrollable for graphics.

104

1. Preprocesstheoriginaltextfde into aCIDreadablefile.

2. Computeall thehierarchyfields.

3. Computeall thecontentsfields

4. Createa newHyperCardstackandtransfertext intothisstackalongwith the
hierarchyandcontentsfields.

For instance,from thetextwhosestructureis describedgraphicallyin Figu.re 4.2(section
4.2.1.1),thefollowing sequenceof cardsis generatedbytheCID conversionmechanism:

Document-X,Preface,1.Introduction,1.1.Purpose,1.1.1.GeneralOverview, 1.1.2.
Details, 1.1.2.1.StructuralDescription,1.1.2.2.FunctionalDescription,1.1.3.
Examples,..., 2. Infrastructure,...

B.4. Graphics Referent Functionalities

An additional function has been introduced that allows management and maintenance of

sensitive graphic area (Figure B.2).

Document Title J

1. Introduction ¢_

1.1. Purpose I

1.1.2. Details k/

I I

I !

I I

, \
Graphics Zone Sensitive

Graphic
Area

Built-in Descriptors

Figure B.2. Graphics node with a sensitive graphic area.

105

B.4.1. Sensitive Graphic Area Creation

The procedure to create a sensitive graphic area is the following:

.

2.

o

Select the CREATE DESCRIPTOR button.

System displays a dialog box asking for a descriptor name. Give a name and select
OK. If CANCEL is selected i the dialog box, then no sensitive graphic area is
created.

Select an area on the screen (i.e., on the graphics) by clicking and dragging with the
mouse. Doing this the sensitive graphic area is positioned and sized.

B.4.2. Sensitive Graphic Area Maintenance

Maintenance of a sensitive graphic area concerns modification of the descriptor name and
the functions: resize and relocate.

106

Appendix C

Multimedia and Virtual
Environments

C.1. Multimedia

Multimedia and virtual environments are exciting new technologies which appear to have

great potential for intelligent assistance applications. We here provide a brief overview of
the state of the art. Multimedia denotes the technology which provides connections between
various information media such as text, graphics, images, sounds, voice, simulations, etc.

C.I.1. History

Multimedia technology has been made possible by improvements in storage technology
(Fox, 1989). The first modern laser videodiscs were produced in the 1970s and had 54 000
analogue video frames (30 minutes of motion video) pressed onto each side of a 12-inch

platter. The compact disc digital audio (CDDA) was launched in 1982, adapting videodisc
technology for storing up to 72 minutes of high-quality digitally encoded audio on a 12-
centimeter mass-produced compact disc. The first prototype of compact disc read-only
memory (CD ROM) drives was demonstrated in 1984. CD ROM disks allow personal
computers to access 600 megabytes of precoded digital data (e.g. text, pictures, databases).
Writable optical disks (write once read-only: WORMs) became commercially available in
1984. WORMs supports are 12-inch platters. They are used for archiving a gigabyte or

more of digital multimedia information. Compact disc interactive (CDI) specifications were
announced in 1986. CDIs allow interaction with multimedia information. Digital video

interactive (DVI) technology was first demonstrated in 1987 by a team of the David Sarnoff
Research Centre. Seventy-two minutes of highly compressed full motion video and FM

quality audio could be compressed in real time using special boards in an IBM PC/AT with
attached CD ROM drive. Erasable optical discs became commercially available in 1988,
storing hundreds of megabytes of multimedia information. In 1988, an ISO (International

Organization for Standardization) standard specifying the volume and file organization of
CD ROMs was approved, allowing inexpensive worldwide publication and distribution of
multimedia data that are directly accessible on a wide range of hardware and operating

systems.

107

C.1.2. Videodiscs

Video, like audio, consists of signals that pass through cables. There are three standards
for analogue video in the world: NTSC in North America and Japan (30 frames per
seconds [fps] and 525 lines per frame); PAL (25 fps and 625 lines per frame) in most of
Europe; and SECAM in France and the USSR (25 fps and 625 lines per frame). Analogue
video can be converted into digital video. An image, still or moving, can be converted into
a video signal, most often through a video camera. This signal can be then recorded, most
commonly on videotape. VHS and Video 8 are analogue composite consumer formats.
Their picture quality and color reproduction are not intended to compete with professional
and industrial formats (e.g. 1-inch "Type C", Component Beta). Video 8 is the newer and
smaller format, and its quality appears to be at least as good as VHS. Both are highly
accessible media, and many videodiscs have been produced in these formats.

Digital video requires more bandwidth than analogue video to produce the same result,
unless sophisticated compression techniques are used. Digital disc recorders are like
videotape recorders with large digital disc memories instead of tapes. They can hold 1500-
3000 frames at a time, and can record and play back in single frame steps, at variable speed
or at 30 fps. Digital disc recorders usually have two memory discs to allow internal
recording playback. Videodiscs can be optical or magnetic, digital or analogue. Eight-inch
and 12-inch laser discs are analogue composite read-only media, recorded once in a special
production facility, and not erasable. CD-size laser discs have a variety of competing
formats, including CDI, CDV (analogue with motion but short play), ICDV (analogue with
motion but longer play) and DVI.

C.1.3. Multimedia Applications

Four types of applications are currently under development at MIT (Mackay & Davenport,
1989): interactive documentaries, learning environments, video data analysis and
multimedia communication.

In the interactive documentary research area, film makers want to choose an optimal

ordering of video segments. A good documentary tries to engage the viewer in an
exploration. The film maker must develop a database of shots and edit lists, as well as an
iconic representation of shots.

The goal of learning environments is to allow students to explore educational software.
The MIT navigation project is a good example of the creation of multimedia object-oriented
databases and learning environments. Hypermedia provides the user with a wider range of
opportunities to explore, by following the links within a network of information nodes.

Human factors scientists use video recordings as data stores for analysis of human
behaviour. They are more interested in the content of the recorded experiments than the
format. Also, they need to mix other data, such as tracks of eye movements or keystroke
logs, to make relevant analyses of experiments. An experimental video annotator (EVA)
has been built by Wendy Mackay to help human factors scientists in video data analysis. It
allows the scientist to create his own labels and annotation symbols prior to a session and
permits on-line annotation of the video during a session.

Multimedia communication is an extension of the current media of long-distance

communication such as electronic mail (asynchronous communication) and telephones
(synchronous communication). The goal here is to provide a networked video editing
system in order to share interactive video data. Users of on-line communication systems
should be able to modify messages.

In multimedia applications a problem remains in the compression and decompression of
video information. Applications that need real-time decompression still suffer from delays
caused by various algorithms.

I08 /

C.2. Virtual Environments

The main goal of virtual environments is to represent reality using appropriate technological
media. This representation should take into account as closely as possible human cognitive
and sensory capabilities to better capture and reproduce the look and feel of the real world it
represents. A virtual environment can be defined as a multisensory simulation which can
mix visual displays, sounds, relative motion, vibrations, chemical smells and wind
simulation. The Sensorama project developed by Morton Heilig in 1962 is an example of

an early system simulating a motorcycle ride through New York city (Lipton, 1964). In a
virtual environment, the user is no longer a passive spectator like someone watching
television. He is also an actor in the simulated environment, which reacts to his inputs. The
user is sitting inside the image and sound. Dynamic aircraft simulators used for training

pilots are an example of virtual environments. However, the term virtual environments has
evolved and currently designates particular simulators where displays and other human-
machine interaction devices have been mounted on the user himself, e.g. helmet-mounted
display, the DataGlove and the DataSuit.

Head-mounted display Head-slaved
stereo cameras

(enclosed) ,. /

3D sound cueing _ leoperator

6 DOF gesture 0 _ _, _ _ _.L_'_

tracking Tactile input \

and feedback _ /_

Figure C. 1. Head-mounted display
and DataGlove for virtual manipulation.

The Aspen Movie Map project, developed at MIT by the Architecture Machine
Group, is an example of a virtual environment where the user can control his viewpoint and
motion in the environment (Lippman, 1980). The Movie Map enables the operator to sit in
front of a touch-sensitive display screen and drive through the town of Aspen, Colorado, at
his own rate, taking any route he chooses, by touching the screen, indicating the turns he
wants to make and the buildings he wants to enter.

Virtual environments have led to the concept of telepresence. This concept allows a user
to feel as though he is in a real remote environment and can interact with it. This concept
was developed by the Philco Corporation in 1958. The resulting system was a cathode-ray
tube (CRT) mounted on the head of an operator. The CRT displayed images from a remote
camera, and the operator was able to control the camera's viewpoint with his head (Comeau
& Bryan, 1961).

109

Anothervirtualenvironment,alsocalledvirtualreality,includesadatagloveandthree-
dimensionaldisplays.TheDataGloveTM was developed by Tom Zimmerman and
introduced by VPL Research in 1987. Scott Fisher designed the first assembly of the
DataGlove with a helmet-mounted display initially developed by Michael McGreevy at
NASA Ames Research Center (Fisher, 1986). The helmet-mounted display included wide-

angle binocular lenses connected to two tiny liquid-crystal .display screens (Figure C.I). On
these screens, a remote computer displays images of an environment (a robotic
environment). The images on the two screens differ slightly, by a displacement of two and
a half inches, as do the two scenes beamed simultaneously onto the two eyes in real life.
Thus a person wearing the helmet-mounted display has binocular vision in the virtual
environment.

The main laboratories involved in virtual environments are the Massachusetts Institute of

Technology (MIT), NASA Ames Research Center, the Naval Ocean Systems Center in
Hawaii, the University of North Carolina (Brooks, 1988, 1990), the University of Utah
(Jacobsen et al., 1984, 1990) and MITrs Tele-Existence Project in Japan.

C.2.1. The DataGlove

Tactile-Feedback

Flexion Sensors

Fiber-Optic
Cables

Cable E

6 DOF Gesture
Tracking

Abduction
Sensors

\
Outer Glove

Glove Lining

Interface Board

Figure C.2. Tactile input glove illustrating flex sensors.

The DataGlove is a light-weight, glove-like device that electronically records and transmits
data records of hand and finger shape and dynamics to a host computer by measuring the
amount of joint bend, finger abduction and thumb circumduction (Zimmerman et al.,
1986). The VPL Research system is based on an optical flex sensor technology. Fifteen
flex sensors are mounted on a stretchable inner glove and are positioned lengthwise along

the first and second joints of each finger, between each finger, between the thumb and first

finger, and across the palm of each glove from thumb to fourth finger (Figure C.2).

E

i

110

Theinstrumentedleft andright innerglovesarecoveredby light-weightcottonouter
glovesandareconnectedby nineconductorcablesto acustominterfaceunit.To obtain
informationaboutthepositionandorientationof thehandandarmin thetaskenvironment,
anadditionalsix-degree-of-freedomtrackingdeviceis mountedabovethewriston theback
of eachDataGlove.Thex, y, z, azimuth,elevationandroll coordinatesof thehandare
returnedto thehostsystematup to60hertz.TheDataGloveprovidesover21degreesof
freedomfor eachhandof thehumanoperator.Currentlytheglovesareinstrumentedwith
fibre-opticflex-sensingdevicesateachfingerjoint andbetweenthefingers(Fisheret al.,
1988). This technology is useful for picking-up and manipulating virtual objects displayed
in 3D in the virtual environment (see Section 3.2).

C.2.2. The Virtual Environment Workstation

The Aerospace Human Factors Division of NASA Ames Research Center developed an
interactive virtual interface environment workstation (VIEW) (Fisher et al., 1988) after a
first attempt, called VIVED. VIEW provides a virtual auditory and stereoscopic image
surround that is responsive to inputs from the operator's position, voice and gestures. It
allows the user to explore a 360 degree synthesized or remotely sensed environment and to
interact physically with its components (Fisher, 1989). VIEW consists of a wide-angle
stereoscopic display unit, glove-like devices for multiple-degree-of-freedom tactile input,
connected speech recognition technology, gesture tracking devices, 3D auditory display
and speech synthesis technology, and computer graphics and video image generating
equipment (Figure C.3).

Head-mounted display Virtual control panel /

(superposition) "_,_._[.... , .,_._"-;- .['-'! p.,,. telescience workstation

/

3Dsoundcueing _ / [_ _ _.<_Z1 II h

track,-,g "[."i I : I.."XI/
,[-

Tactile input > L._.@j _./! l>,.IM ""Mu
and feedback OL..._-_--_ _L.jJ data space (360 o)

Figure C.3. Virtual interface environment workstation.

Head-mounted displays and optics
The 1988 version of the NASA head-mounted display unit used two passive,
monochromatic, liquid-crystal display screens presented one to each eye of the user
through wide-angle optics. Details are provided in Fisher et al. (1988). The optics provide
a 120 degree horizontal and vertical field of view for each eye and up to a 90 degree
binocular field overlap. The total instantaneous field of view is approximately 120 degrees.
The displays and optics unit is positioned directly in front of the viewer's eyes and coupled

111

to headmotionby meansof a light-weightheadgearconfiguration.A positiontracking
sensor,amicrophonefor inputto theconnectedspeechrecognitionsubsystem,and
earphonesfor auditorydisplayfeedbackto theoperator,arealsoavailable(Wenzelet al.,
1988).

3D displays
The computer image system allows high-performance, real-time 3D graphics presentation at
resolutions of 620 times 220 pixei elements with 320 distinguishable vertical lines and

approximatively 16 levels of greyscale. This imagery is generated at rates from 7 to 30
frames per second. For real-time video input of remote environments, two miniature CCD
video cameras are used to provide stereoscopic imagery. In addition, a binaural auditory
display is capable of presenting a wide variety of binaural sounds to the operator via
earphones using sound synthesis technology developed for music synthesizers. The
primary function of this auditory display is to provide both discrete and dynamic auditory
cues which can augment or supply information missing from the visual or gestural
displays.

C.2.3. Applications

Telerobotics and teleoperations
Virtual environments can be used to aid control of semiautonomous robots in remote and/or

dangerous environments, e.g. proposed semiautonomous rovers on the Martian surface.
Such robots have to communicate with humans and the type of communication involved

will be remote and probably with long delays (Kim et al., 1988). Such communication will
probably be handled by operations procedures (plans), and these procedures have to be
managed and maintained. They will constitute a high-level language shared between the
semiautonomous robot(s) and the humans. They can be designed initially from design
descriptions and rationale, but they have to be tailored to the tasks the robot has to
accomplish. Procedure construction is an incremental process involving frequent feedback
from the execution of various tasks.

One reasonable approach is case-based. The initial domain theory will come from design
and will be modified incrementally by various eventualities encountered during operations.

Operations have to be performed in an experimental environment first. The art of building

procedures has to be understood from a cognitive point of view. Such understanding will
help in real operations in the building of recovery strategies after unexpected events.

First, the robot must receive a signal to start its job (either preprogrammed or from a
human). The robot then executes the corresponding procedure. If the procedure succeeds,
the robot can start a subsequent task or wait for another command from the human. If the
procedure does not succeed, the robot stops and sends the human a history of the events
recorded during the preceding minutes. This could include the evolution of various
essential control and environmental parameters, and, eventually, videotaped (or digitally
encoded) scenes of the performed task. At this point, the human can replay the sequence of

events leading up to the failure. This could be done in a virtual environment. Humans are
very good at assessing situations when they are provided with realistic and relevant
information. Clearly, they can also be helped by intelligent assistance if necessary. If the

human operator detects a problem (e.g. an unexpected obstacle blocking the course of the
robot), he can design a recovery procedure (in the virtual environment) to solve this
unanticipated problem. At this point there are two types of solutions. Either the problem is
already known (perhaps generic) and a recovery procedure has already been designed. In
this case, the system can help in retrieving the corresponding procedure. Alternatively, the

problem is new, and the human will have to invent an appropriate recovery procedure. This
can be done in the virtual environment "by hand", and the movements recorded, interpreted

112

_S

z

L

_--r

r

and transformed into a procedure understandable by the robot. In both cases, a procedure is
generated which will be sent to the remote location where the real robot operates.

Medicine.

Another scenario in progress involves the development of a surgical simulator for medical
students and plastic surgeons that could be used much as a flight simulators are used to
train pilots. The surgeon can explore an electronic model of the body to do preoperation
planning and patient analysis. Students can also see what the surgeon is currently looking
at (Jacobsen et al., 1984, 1990).

113

z

Appendix D

HyperCard and HyperTalk

HyperCard was developed by Bill Atkinson on the Macintosh computer at Apple. It is now
part of the basic Macintosh software. It is so easy to learn to use that it is not even
necessary to have any background in computer science to start using it. It provides the
following capabilities: rapid prototyping and design of user interfaces; assembly and
organization of text, graphics, images and sounds; segregation of large quantities of
information into predefined units; and efficient manipulation of the units by the design of
appropriate links between them. HyperCard version 2.0 allows display of multiple
windows on the Macintosh screen.

HyperTalk is the underlying language of HyperCard and is based on the writing of
scripts, sequences of instructions. HyperTalk has a syntax which is very easy to use. It
allows event-driven or message-driven programming which is defined as follows.

The basic entities in HyperTalk are handlers. An on handler is a sort of reflex or
DEAMON. It reacts when a message is sent either by the mouse or by another part of
HyperTalk. For instance, the handler "on myAction ..." is executed if the message
"myAction" is sent to it. The "mouseUp" message is sent each time a mouse click is
performed by the user. A function handler in HyperTalk is equivalent to a function in any
other programming language.

In HyperCard, the predefined units are buttons, fields, cards, backgrounds and stacks.
They all have properties and scripts attached and can be defined as objects. We will call the
basic objects of HyperCard the buttons and the fields. Buttons are active areas on the

HyperCard window and can be triggered by the mouse or by a message coming from any
script of HyperCard. Fields are areas on the HyperCard window which contain text and
within which it is possible to edit, select, cut, copy and paste any chunk of text. The
background includes the buttons and fields common to a set of cards. Conversely, the card
includes basic objects and information that may change. For instance, if you want to build a
calendar, you write the day names, etc., that remain constant on the background and the
things you have to do on a particular day will be written on the corresponding card. Basic
objects in backgrounds and cards can be overlaid. It is thus possible to build temporary or
permanent masks. A stack is the electronic equivalent to a card box. To maintain
consistency, one stack is created for each homogeneous card. This is not, however,
mandatory. Indeed, HyperCard allows the definition of as many backgrounds as may be
needed within a stack. Within HyperCard there is a built-in hierarchy of objects, including
an inheritance mechanism (Figure D. 1).

IJAGI:_i NTENT.IONALLX
115 PRECEDING PAGE BLANK NOT FILMED

Script
Inheritance

._ HyperCard
Home

Stack

Background

Card

Events

Button I Field

Figure D.1. Hierarchy in HyperCard.

Home Card I_1

Intro Help Address Documents Fik index Book Shelf

Phone To Do Veekly Calendar Stlde Sho_ H_perC_l¢

Ar_ Ideas Clip Art Card Ideas Briton Ideas Stack Ideas Ouotatio6$

Plots 1.2.2 Release Notes

Copyright ©1987-88 Apple Computer, Inc.
<_ _ 8:15 AM

Figure D.2. The Home stack is necessary for HyperCard to work.

116

User Preferences

User Name:

User Level:

C} Browsing

0 Typing

0 Pointing

0 Authoring

_} Scripting

[] Text Arrows

[] Power Keys

[] Blind Typing

b

Figure D.3. User Preferences card in the Home stack.

ButtonName:[' , • I

Card button number: 16 Style:

Card button ID: 17 {_ transparent

[] Show name (_) opaque

[] Auto hilite C) rectangle
(_) shadow
C) round rect

[Icon... 1 0 check box

{ LinkTo... I 0 radio button

(script...] (I OK]C oncel]

Figure D.4. Button properties.

There is a special stack called Home which is the first card the user sees the first time he

launches a HyperCard application (Figure D.2). Home* plays the role of a desktop. An
object inherits the scripts defined at a higher level, except if the same script is defined in its
own script. Thus, this feature allows exceptions. As HyperCard is a message-driven
system, when a message is sent, the first object of the hierarchy that includes a handler or a
function describing this message intercepts the message.

HyperCard has five levels of usage corresponding to different types of users (Figure
D.3). At the browsing level, which is a read-only mode, the user can browse through

* As a matter of fact, a HyperCard application can be built which will not display the Home card first.
However, Home will still be on top of the stack in the hierarchy.

117

availablestacks.At thetypinglevel,theusercantypetextinto fields.At thepaintinglevel,
theusercanaddgraphicsto thestacks,eitherdirectlybyusingHyperCardtoolsor by
importingMacPaintgraphics.At theauthoringlevel,theusercanmodify thestructureof
stacks.At thescriptinglevel,theuserhasfull controlof thestacks.

A buttonhaspropertiesandascriptwhichattachabehaviourto it. Propertiesincludethe
numberof thebuttonin thecard,its identificationnumber,its style,its iconandseveral
otheroptions.As anexample,thepropertiesof the"Phone"button,displayedonFigure
D.2, arepresentedin FigureD.4. Thescriptof thisbuttonispresentedin FigureD.5.

• TTrl

Script of card button id 17 = "Phone"

on mouseUp

to stock "Phi,." m

end mouseUp I

iii

Figure D.5. Example of a script window.

The script window presented in Figure D.5 is the same as script windows for stacks,
backgrounds, cards and fields. The script presented in this window says that when the
mouse is up then the card called "Phone" will be displayed, i.e. the link from this button to
the card "Phone" is activated. Scripts introduce a great deal of flexibility and provide a very

interesting way to program dynamic links. Here, a dynamic link is a link between two
nodes that is computed by a script. Since HyperTalk is an interpreted language, HyperCard
applications may be very slow. For this reason, HyperCard provides a very interesting
feature - external commands (XCMD) and external functions (XFCN). These functions
can be written in C language or Pascal, compiled and attached as resources to HyperCard
stacks. Such features speed up heavy calculations and provide a simple way of connecting

HyperCard to the external world.

118

Appendix E

Abbreviations and Acronyms

AI
AIM
BID
CDI
CD ROM
CERT
CID
CIDCP
CNES
CRT
CSCW
DBMS
HI
IAS
IBIS
IHMS
ISO
JSC
KR
M1T
NASA
ORS
PALS
PARC
PC
PDRD
PRD
PRS
SRAR
SRI
SSE
SSF
TMIS
VIEW
XCMD
XFCN

Artificial intelligence
Advanced Interaction Media

Built-in descriptors
Compact disc interactive

Compact disc read-only memory
Centre d'Etudes et de Recherches de Toulouse

Computer Integrated Documentation
CID control panel
Centre National d'Etudes Spatiales
Cathode-ray tube
Computer supported cooperative work
Database management system
Human Intelligence
Intelligent assistant systems
Issue-based information systems
Integrated human-machine systems
International Organization for Standardization
NASA Johnson Space Center
Knowledge representation
Massachusetts Institute of Technology
National Aeronautics and Space Administration
Orbital Refueling System
Program Automated Library System
Xerox Palo Alto Research Center

Personal Computer
Program Definition and Requirement Document
Program Requirement Document
Procedural Reasoning System
Situation Recognition and Analytical Reasoning model
Stanford Research Institute

Software Support Environment
Space Station Freedom
Technical Information Management System
Virtual interface environment workstation

HyperCard external command wriuen in C or Pascal
HyperCard external function written in C or Pascal

119

References

Agre, P., & Chapman, D., (1987). Pengi: An Implementation of a Theory of Activity.
Proceedings of AAAI-87, Morgan Kaufmann Publishers, San Mateo, CA.

Anderson, J.R., (1976). Language, Memory and Thought. Hillsdale, Erlbaum, NJ.

Anderson, J.R., (1983). The Architecture of Cognition. Harvard University Press,
Cambridge, MA.

Ase, H. & Kobayashi, S. (1990). Information Retrieval Condition Generation System
using Case-Based Reasoning. Proceedings of Pacific Rim international Conference on
Artificial Intelligence'90, Nagoya, Japan, November 14-16.

Asker, J.R. (1990). GAO Faults NASA for Mismanaging Storage of Valuable U.S. Space
Science Data. Aviation Week & Space Technology, April 2.

Aubron, S. & Hooper, K. (1988). Interactive Multimedia: Visions of Multimedia for
Developers, Educators, & Information Providers. Microsoft Press.

Boy, G.A. (1986). An Expert System for Fault Diagnosis in Orbital Refueling Operations.
AIAA 24th Aerospace Sciences Meeting, Jan., Reno, Nevada.

Boy, G.A. (1987). Operator Assistant Systems. Int. J. Man-Machine Studies, 27, pp.
541-554.

Boy, G.A. & Rappaport, A. (1987). Operator Assistant System in Space Telemanipulation:
Knowledge Acquisition by Experimentation. ROBEX, Pittsburgh, USA, Ju. 4-5.

Boy, G.A. & Delail, M. (1988). Knowledge Acquisition by Specialization-Structuring: A

Space Telemanipulation Application. AAAI-88, Workshop on Integration of Knowledge
Acquisition and Performance Systems, St Paul, Minnesota, USA.

Boy, G.A., & Mathr, N., (1989). Operator Assistant Systems: An Experimental Approach
Using A Telerobotics Application. IJCAI Workshop on Integrated Human-Machine
Intelligence in Aerospace Systems, Detroit, Michigan, USA, August 21.

Boy, G.A. (1989). The Block Representation in Knowledge Acquisition for Computer
Integrated Documentation. Proceedings Knowledge Acquisition for Knowledge-Based
Systems, AAAI Workshop, Banff, Canada.

Boy, G.A. (1991). Intelligent Assistant Systems. Academic Press, London.

|_1_ INTENTIONALLYBLAIW 121 PRECEDING PAGE BLANK NOT FILMED

Brand, S. (1987). The Media Lab: Inventing the Future at MIT. Viking Penguin.

Brown, P.J. (1989). Linking and Searching within Hypertext. Electronic Publishing-
Origination, Dissemination and Design 1, 1, April, pp. 45-53.

Brown, P.J. (1989). Do we need maps to navigate round hypertext documents? Electronic
Publishing-Origination, Dissemination and Design 2, 2, July, pp. 91-100.

Canter, D., Rivers, R. & Storrs, G. (1985). Characterizing User Navigation through
Complex Data Structures. Behaviour and Information technology 4, 2, April-June, pp. 93-
102.

Carbonell, J.G. & Hood, G. (1986). The World Modelers Project: Learning in a Reactive
Environment. in Mitchell, T.M., Carbonell, J.G., & Michalski, R.S. (editors), Machine

Learning: A Guide to Current Research, Kluwer Academic Press, pp. 29-34.

Chase, W.G. & Simon, H.A. (1973). Perception in Chess. Cognitive Psychology, 4, pp.
55-81.

Chen, H. & Dhar, V. (1987). Reducing Indeterminism in Consultation: A Cognitive Model
of User/Librarian Interactions. Proceedings of AAAr87, Seattle, WA.

Cochrane, P.A. & Markey, K. (1985). Preparing for the Use of Classification in Online
Cataloging Systems and in Online Catalogs. Information Technology and Libraries, 4, 2,
pp. 91-111.

Conklin, J. (1987). Hypertext: An Introduction and Survey. Computer, September.

Conklin, J. & Begeman, M.L. (1988). glBIS: A Hypertext Tool for Exploratory Policy
Discussion. ACM Transactions Office Information Systems 6, 4, October, pp. 303-331.

Croft, W.B. & Turtle, H. (1989). A Retrieval Model for Incorporating Hypertext Links.

Hypertext'89 Proceedings, pp. 213-224, ACM press, New York, 1989.

Crouch, D.B., Crouch, C.J. & Andreas, G. (1989). The Use of Cluster Hierarchies in

Hypertext Information Retrieval. Hypertext'89 Proceedings, pp. 225-237, ACM press,
New York, 1989.

Dede, C.J., Sullivan, T.R. & Scace, J.L. (1988). Factors Shaping the Evolution of
Electronic Doctanentation Systems. Technical report, Research Activity No. IM. 4,
Research Institute for Computing and Information Systems, University of Houston, Clear
Lake.

deKleer, J. (1986). An assumption-based TMS. Artificial Intelligence, 28, pp. 127-162.

Dreyfus, H.L. (1979). What Computer Can't Do, The Limits of Artificial Intelligence.
Harper and Row, Pub., Inc., New York.

Doszkocs, T.E. (1983). CITE NLM: Natural Language Searching in an Online Catalog.

Information Technology and Libraries, 2, 4, pp. 364-380.

Doyle, J. (1979). A truth maintenance system. Artificial Intelligence, 12, pp. 231-272.

122

Dumais,S.T.,Furnas,G.W., Landauer,T.K., Deerwester,S. & Harshman,R. (1988).
UsingLatentSemanticIndexingto ImproveAccessto TextualInformation.Proceedings of
the ACM CHI'88, Washington D.C., May 15-19, pp. 281-285.

Egan, D.E., Remde, J.R., Landauer, T.K., Lochbaum, C.C. & Gomez, L.M. (1989).
Acquiring Information in Books and SuperBooks. Proceedings of the Annual Meeting of
the American Educational Research Association, San Francisco, CA, March 27-30.

Engelbart, D.C. (1963). A Conceptual Framework for the Augmentation of Man's
Intellect. In Vistas in Information Handling, Vol. 1, Spartan Books, London.

Falzon, P. (1986). La communication Homme-Machine: Les Strategies de Dialogue et le
Langage de rlnteraction. Proc. Workshop on Human Machine Interaction and Artificial
Intelligence in Aeronautics and Space, G. Boy Ed., ENSAE/CERT, Toulouse, Oct. 13-14.

Falzon, P. & Visser, W. (1989). Variation in Expertise. Implications for the Design of
Assistance Systems. Third International Conference on Human-Computer Interaction,
Boston, Elsevier Sc. Publishers.

Fikes, P.E. & Nilsson, N.J. (1971). STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving. Artificial Intelligence, 2, pp. 189-208.

Fiscal Year 1985 Congressional Budget. (1985). Cost Per Flight Operations Costs. Office
of Management and Budget.

Fischer, G. & Stevens, C. (1990). Information Access in Complex, Poorly Structured
Information Spaces. University of Colorado at Boulder. Technical Report CU-CS-461-90,

February.

Fischer, G., McCall, R. & Morch, A. (1989). Design Environments for Constructive and
Argumentative Design. Proceedings of the ACM CHI'89, Austin, TX, April 30-May 4,
pp. 269-275.

Fischer, G., Henninger, S. & Redmiles, D. (1990). A Conceptual Framework and
Innovative Systems for Accessing Knowledge for Software Reuse. Draft of a paper to be
presented at the HCI Consortium 1990 Winter Conference, February.

Fisher, D.H. (1987). Knowledge Acquisition via Incremental Conceptual Clustering.
Machine Learning, 2, pp. 139-172.

Foss, C.L. (1988). Effective Browsing in Hypertext Systems. Proceedings of RIAO'88
Conference User-Oriented Context-Based Text and Image Handling, MIT, Cambridge,
MA, March 21-24, pp. 82-98.

Friedland, P.E. (1981). Acquisition of procedural knowledge from domain experts.
Proceedings of the Seventh International Joint Conference in AI, Vancouver, B.C.,
Canada, pp.856-861.

Genesereth, M.R. & Nilsson, N.J. (1987). Logical Foundation of Artificial Intelligence.
Morgan Kaufmann Publisher, Inc., Los Altos, CA.

Gruber, T. (1989). Automated Knowledge Acquisition for Strategic Knowledge. Report
no. KSL 89-12, Knowledge System Laboratory, Computer Science Department, Stanford

123

University,Stanford,CA 94305,to appearin aspecialissueof Machine Learning on
automated knowledge acquisition.

Harris, L.R. (1977). User Oriented Data BaseQuery with the ROBOT Natural Language
Query System. International Journal of Man Machine Studies, 9, pp. 697-713.

Hayes-Roth, B., Washington, R., Hewett, R & Hewett, M. (1989). Intelligent Monitoring
and Control. Proceedings oflJCAl, Detroit, Michigan.

Hjerppe, R.. Project HYPERCATalog: Vision and Preliminary Conceptions of an
Extended and Enhanced Catalog. Proceedings of 6th IRFIS, Frascati, Italy, pp. 15-18.

Humphrey, S.M. (1987). Illustrated Description of an Interactive Knowledge-Based
Indexing System. Proceedings of the lOth International ACM SIGIR Conference on R&D
in INformation Retrieval. New Orleans. ACM Press, New York, pp. 73-90.

Jones, R. (1989). A Model of Retrieval in Problem Solving. PhD Dissertation. Department
of Information and Computer Science, University of California, lrvine, CA.

Jones, W.P. (1987). How do We Distinguish the Hyper from the Hype in Non-Linear
Text ? Human-Computer Interaction - INTERACT'87, H.J. Bullinger and B. Shackel
(Editors), Elsevier Science Publishers, North Holland.

Korf, R.E. (1985). Macro-Operators: A Weak Method for Learning. Artificial Intelligence,

26, pp.35-77.

Kibby, M.R. & Mayes, J.T. (1989). Towards Intelligent Hypertext. In McAleese, R.
(Ed.) Hypertext Theory into Practice, Albex 1989, pp. 164-172.

Laird, J.E., Newell, A. & Rosenbloom, P.S. (1984). Towards chunking as a general
mechanism. Proceedings AAM-84, Austin, Texas.

Laird, J.E., Newell, A. & Rosenbloom, P.S. (1985). Soar: An Architecture for General

Intelligence. Artificial Intelligence,.

Laird, J.E., Rosenbloom, P.S. & Newell, A. (1986). Chunking in SOAR: The Anatomy
of a General Mechanism. Machine Learning, Kluwer Academic Publisher, The
Netherlands.

Lowry, D.J. & Feaster, T.A. (1987). Regarding Space Leadership through Control of Life
Cycle Costs. 25th International Space Conference, Cocoa Beach, Florida.

Luhn, H.P. (1957). A Statistical Approach to the Mechanized Encoding and Searching of
Literary Information. IBM Journal of Documentation, 28:1, October, pp. 309-317.

MacLean, A., Carter, K., L6vstrand L. & Moran, T. (1990). User-Tailorable Systems:

Pressing the Issues with Buttons. Proceedings of the ACM CHI'90, Seattle, Washington,
April 1-5.

Martin, J. (1990). Hyperdocuments and How to Create Them. Prentice Hall, Engiewood
Cliffs, NJ.

Math6, M. (1990). Intelligent Assistance to Process Control: A Space Telemanipulation

Application (In French). PhD Thesis Dissertation. ENSAE, Toulouse, France.

E

124
E

Miller, G.A. (1956). The magic number seven, plus or minus two: Some limits on our
capacity for processing information. Psychological Review, 63, pp. 81-97.

Minsky, M. (1985). Society of Minds. Touchstone Books, Published by Simon &
Schuster Inc., New York.

Minsky, M. (1975). A Framework for Representing Knowledge. In P. Winston Ed., The
Psychology of Computer Vision, 211-277, New York: McGraw Hill.

Mitchell, T.M. (1982). Generalization as Search. Artificial Intelligence, 18, pp. 203-226.

Monk, A. (1989). The Personal Browser: A Tool for Directed Navigation in Hypertext
Systems. Interacting with Computers 1, 2, August, pp. 190-196.

Nelson, T.H. (1967). Getting It Out of Our System. Information Retrieval: A Critical
Review, G, Schechter, Ed., Thompson Books, Washington D.C.

Newell, A., & Simon, H., (1972). Human Problem Solving. Prentice-Hall, Englewood
Cliffs, N.J.

Newell, A. & Simon, H. (1981). Mechanisms of Skill Acquisition and the Law of
Practice. In J.R. Anderson (Ed.), Cognitive Skills and Their Acquisition. Lawrence
Erlbaum, Hillsdale, NJ.

Nielsen, j. (1989). HyperText & HyperMedia. Academic Press, London, UK.

Nilsson, N.J. (1988). Action Networks. Computer Science Department, Stanford
University, Stanford, CA 94305.

Oatley, K.G. (1977). Inference, Navigation, and Cognitive Maps. In Johnson-Laird, P.N.
& Wason, P. (Eds.) Thinking, Readings in Cognitive Science, Open University Set Book,
Cambridge University Press, Cambridge, pp. 537-547.

Ochanine, D.A. (1981). L'Image Operative. Actes d'un sdminaire et recueil d'articles,
Centre d'Education Permanente, D4partement d'Ergonomie et Ecologie Humaine,
Universit6 Paris I.

Ohlsson, S. (1987). Transfer of Training in Procedural Learning: A Matter of Conjectures
and Refutations? In L. Bolc (Ed.), Computational Models of Learning. Springer Verlag,
Berlin.

Parsaye, K., Chignell, M., Khoshafian, S. & Wong, H. (1989). Intelligent Databases -
Object-Oriented, Deductive Hypermedia Technologies. Wiley, New York.

Pollitt, A.S. (I989). Information Storage and Retrieval Systems, Origin, Development and
Applications. Ellis Horwood Limited, Publishers, Chichester, John Wiley & Sons, New
York.

Quillian, M.R. (1968). Semantic Memory. In M.L. Minsky (Ed.), Semantic Information
Processing. MIT Press, Cambridge, MA.

125

Rappaport,A,R, & Gaines,B. (1988).Integrationof AcquisitionandPerformanceSystems.
Proceedings of the Integration of Knowledge Acquisition and Performance Systems
Workshop, AAAI-88, St Paul, Minnesota, August 21.

Reason, J. (1986). Decision Aids: Prothesis or Tools ? Intelligent Decision Support in

Process Environments, NATO Workshop, Nov. 11-14, Ispra, Italy.

Quillian, M.R. (1968). Semantic Memory. In M. Minsky (ed.), Semantic Information
Processing, MIT Press, Cambridge, MA, pp. 216-260.

Rasmussen, J. (1986). Information Processing and Human-Machine Interaction: An
Approach to Cognitive Engineering. North-Holland, New York.

Rogers, W.P. (1986). Presidential Commission on the Space Shuttle Challenger Accident
Report. U.S. Government Printing Office: 688-274/58381, June.

Salton, G. (1989). Automatic Text Processing. The Transformation, Analysis, and
Retrieval of Information by Computer. Addison Wesley, Reading.

Schank, R.C. & Abelson, R.P. (1977). Scripts, Plans, Goals and Understanding.
Laurence Erlbaum, Hillsdale, N.J., pp. 1-68.

Shell, P. & Carbonell, J.G. (1989). Towards a General framework for Composing

Disjunctive and Iterative Macro-Operators. Proceeding oflJCAI, Detroit, Michigan.

Spark Jones, K. (1972). A Statistical Interpretation of Term Specificity and its Application
in Retrieval. Journal of Documentation, 28:1, March, pp. 11-21.

Stotts, P.D. & Futura, R. (1988). Adding Browsing Semantics to the Hypertext Model.
Proceedings of the ACM Conference on Document Processing Systems, Santa Fe, NM,
December 5-9, pp. 43-50.

Tambe, M. & Newell, A. (1988). Why Some Chuncks are Expensive. CMU-CS-88-103,

Department of Computer SCience, Carnegie Mellon University, Pittsburgh.

Trigg, R.H. & Weister, M. (1986). Text Net: A Network Based Approach to Text
Handling. ACM Transactions on Office Information Systems, 4:1, January, pp. 1-23.

Walker, D. (1981). The Organization and Use of Information: Contributions of

Information Science, Computational Linguistics and Artificial Intelligence. Journal of the
American Society for Information Scinece, Sept., pp. 347-363.

Waltz, D.L. (1978). An English Language Question Answering System for a Large
Relational Data Base. Communications of the ACM, 21, pp. 526-539.

Weyer, S.A. (1988). As we May Learn. In Aubron, S. & Hooper, K. (1988). Interactive
Multimedia: Visions of Multimedia for Developers, Educators, & Information Providers.
Microsoft Press, pp. 87-103.

Whalen, T. & Patrick, A. (1989). Conversational Hypertext: INformation Access through

Natural Language Dialogues with Computers. Proceedings of the ACM CHI'89, Austin,
TX, April 30-May 4, pp. 289-292.

126
m

Williamson, K.E., (1986), "Learning from Exceptions in Databases", in Machine
Learning: A Guide to Current Research, edited by Tom M. Mitchell, Jaime G. Carbonell,
and Ryszard S. Michalski, Kluwer Academic Publishers.

Woods, W.A. (1975). What's in a Link: Foundation for Semantic Networks. in Bobrow
D.G., Colins A. (eds.), Representations and Understanding: Studies in Cognitfi_e Science,
Academic Press, New York, pp. 35-84.

Yankelovich, N., Meyrowitz, N. & van Dam, A. (1985). Reading and Writing the
Electronic Book. Computer, 18:10, October, pp. 15-30.

Yu, C.T., Luk, W.S. & Siu, M.K. (1979). On Models of Information Retrieval

Processes. Information Systems, 4:3,.pp. 205-218.

Zimmerman, M., (1988), "TEX version 0.5", Silver Spring, MD.

127

Form Approved

REPORT DOCUMENTATION PAGE OMBNoo7o,
Publicrepo_ingblJ'_denfopthis collectionof informalon s eat matedto a,terage 1 hourper response includingthe time for reviewingtnr,tructiorts,searchingexistingd,atasources,
gatheringand maintainingthe data needed, and completingand reviewingthe collection of information. Sendcommentsregarding this burdenestimateor any other aspectof this
collectionof informationIncludingsuggestions for reducingthk=burden, to WashingtonHeadquartersServices, DtroctoratoforinformationOperationsand Reports, 121,5Jefferson
Davis Highway,Suite 1204, Arlington,VA 22202-4302, andto the Off ce of Managementand Budget,PaperworkReductionProject(0704-0188). Washington,DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3.

September 1991
4. TITLE AND _SUBTITLE

Computer Integrated Documentation

REPORTTYPEANDDATESCOVERED
Technical Memorandum

5. FUNDINGNUMBERS

6. AUTHOR(S)

Guy Boy

7. PERFORMINGORGAmZATIONNAME(S)ANDADDRESS(ES)

Ames Research Center

Moffett Field, CA 94035-1000

9. SPONSORING/MONiTORiNG AGENCY NAME(S) AND AD_'IRE'ss(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

|_m r

11. SUPPLEMENTARY NOTES

Point of Contact: Guy Boy, Ames Research Center, MS 244-17, MoffeU Field, CA 94035-1000;
(415) 604-3369 orFTS 464-3369

_Ir I I I I II I

i2a. DISTRIBUTION/AVAiLABILITY STATEMENT

Unclassified -- Unlimited

Working Paper

Subject Category 61

13. AItSTRACT (Maximum 200 words)

RTOP 590-12-12

NAS 2-13210

I -irrl

6. PERFORMING ORGANIZATION
REPORT NUMBER

A-91167

10. SPONSORING;MONITORING

AGENCY REPORT NUMBER

NASA TM-103870

12b. DISTRIBUTION CODE

This technical memorandum (TM) presents the main technical issues of the Computer Integrated Documentation

(CID) project. The problem of automation of documents management and maintenance is analyzed both from an

artificial intelligence viewpoint and from a human factors viewpoint. Possible technologies for CID are reviewed:

conventional approaches to indexing and information retrieval, hypertext, and knowledge-based systems. Aparticular

effort has been made to provide an appropriate representation for contextual knowledge. This representation is used

to generate context onhypertext links. Thus, indexing in CID is context-sensitive. The implementation of the current
version of CID is described. It includes a hypertext database, a knowledge-based management and maintenance

system, and a user interface. This TM also provides a series of theoretical considerations as navigation in hyperspace,

acquisition of indexing knowledge, generation and maintenance of a large documentation, and relation to other work.

14. SUBJECT "_rERMS ""

Hypermedia, Information retrieval, Context-sensitive indexing, Artificial intelligence,

Human-computer interaction

I?. SECURITY CLASSIFICATION 18, SECURITY CLASSIFIC,6,TtON 19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified
,i

___ I

NSN 7540-01-280-5500

lS. NUMBER OF PAGES

132
16. PRICE CODE

A07
2(). LIMITATION OF AB_TRACl

'" Standard Form 298 (Rev. - 9)
Prescribed by AN_I Ei.td. ;_311-1 8

298-I 02

r

